Display options
Share it on

PLoS One. 2021 Dec 13;16(12):e0259562. doi: 10.1371/journal.pone.0259562. eCollection 2021.

Evidence for thermosensitivity of the cotton (Gossypium hirsutum L.) immature fiber (im) mutant via hypersensitive stomatal activity.

PloS one

Hee Jin Kim, Naohiro Kato, Ruth Ndathe, Gregory N Thyssen, Don C Jones, Harish H Ratnayaka

Affiliations

  1. USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America.
  2. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America.
  3. Cotton Incorporated, Cary, NC, United States of America.
  4. Department of Biology, Xavier University of Louisiana, New Orleans, LA, United States of America.

PMID: 34898615 PMCID: PMC8668099 DOI: 10.1371/journal.pone.0259562

Abstract

Thickness of cotton fiber, referred to as fiber maturity, is a key determinant of fiber quality, lint yield, and textile performance. The cotton immature fiber (im) mutant has been used to study fiber maturity since its fiber is thinner than the wild type near isogeneic line (NIL), Texas Marker-1 (TM-1). The im phenotype is caused by a single recessive mutation of a pentatricopeptide repeat (PPR) gene that reduces the activity of mitochondrial complex I and up-regulates stress responsive genes. However, the mechanisms altering the stress responses in im mutant are not well understood. Thus, we characterized growth and gas exchange in im and TM-1 under no stress and also investigated their stress responses by comparing gas exchange and transcriptomic profiles under high temperature. Phenotypic differences were detected between the NILs in non-fiber tissues although less pronounced than the variation in fibers. At near optimum temperature (28±3°C), im maintained the same photosynthetic performance as TM-1 by means of greater stomatal conductance. In contrast, under high temperature stress (>34°C), im leaves reduced photosynthesis by decreasing the stomatal conductance disproportionately more than TM-1. Transcriptomic analyses showed that the genes involved in heat stress responses were differentially expressed between the NIL leaves. These results indicate that the im mutant previously reported to have low activity of mitochondrial complex I displays increased thermosensitivity by impacting stomatal conductance. They also support a notion that mitochondrial complex I activity is required for maintenance of optimal photosynthetic performance and acclimation of plants to high temperature stress. These findings may be useful in the future efforts to understand how physiological mechanisms play a role in determining cotton fiber maturity and may influence stress responses in other crops.

Conflict of interest statement

This research was partially supported by Cotton Incorporated (#19-858). The funder provided supports in the form of research materials, but did not have any role in the study design, data collection a

References

  1. Plant Physiol. 2003 Jan;131(1):264-75 - PubMed
  2. Photosynth Res. 2008 Oct-Dec;98(1-3):589-608 - PubMed
  3. Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13430-5 - PubMed
  4. Curr Opin Plant Biol. 2006 Dec;9(6):654-63 - PubMed
  5. Plant Physiol. 2001 Dec;127(4):1361-6 - PubMed
  6. Annu Rev Plant Biol. 2014;65:415-42 - PubMed
  7. Planta. 1987 Apr;170(4):489-504 - PubMed
  8. Front Plant Sci. 2012 May 21;3:104 - PubMed
  9. Genetics. 2021 Mar 3;217(1):1-17 - PubMed
  10. J Exp Bot. 2006;57(12):3195-207 - PubMed
  11. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13730-4 - PubMed
  12. BMC Genomics. 2013 Dec 17;14:889 - PubMed
  13. Planta. 1973 Mar;110(1):29-42 - PubMed
  14. Plant Cell Environ. 2008 Sep;31(9):1299-306 - PubMed
  15. J Exp Bot. 2016 Jun;67(13):3793-807 - PubMed
  16. Nat Genet. 2019 Feb;51(2):224-229 - PubMed
  17. Plant Physiol. 2015 Jun;168(2):490-501 - PubMed
  18. Planta. 2012 Mar;235(3):603-14 - PubMed
  19. J Hered. 2002 Mar-Apr;93(2):130-2 - PubMed
  20. Plant Physiol. 2014 Mar;164(3):1293-308 - PubMed
  21. Curr Opin Plant Biol. 2019 Feb;47:106-111 - PubMed
  22. Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190410 - PubMed
  23. Plant Mol Biol. 2005 Apr;57(6):871-88 - PubMed
  24. J Photochem Photobiol B. 2014 Aug;137:116-26 - PubMed
  25. Plant Mol Biol. 2017 Mar;93(4-5):355-368 - PubMed
  26. J Exp Bot. 2006;57(9):2075-85 - PubMed
  27. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3436-41 - PubMed
  28. Plant Physiol. 2000 Nov;124(3):1239-50 - PubMed
  29. Plant Mol Biol. 2009 Mar;69(4):451-62 - PubMed
  30. Plant Signal Behav. 2011 Sep;6(9):1305-11 - PubMed
  31. Plant Physiol. 2016 Jan;170(1):354-66 - PubMed
  32. New Phytol. 2008;179(3):615-628 - PubMed
  33. J Exp Bot. 2013 Oct;64(13):3983-98 - PubMed
  34. BMC Genomics. 2014 Feb 01;15:94 - PubMed
  35. Photosynth Res. 2016 Sep;129(3):231-8 - PubMed
  36. PLoS One. 2014 Nov 03;9(11):e111402 - PubMed
  37. Plant Physiol. 2015 Oct;169(2):1344-55 - PubMed
  38. Ann Bot. 2002 Jun;89 Spec No:895-905 - PubMed
  39. Plant J. 2020 Mar;101(5):1040-1056 - PubMed
  40. New Phytol. 2017 Jan;213(2):560-571 - PubMed
  41. Genesis. 2015 Aug;53(8):474-85 - PubMed
  42. Plant Cell Environ. 2021 Jul;44(7):2150-2166 - PubMed
  43. Plant J. 2012 Sep;71(5):836-49 - PubMed
  44. Trends Plant Sci. 2010 Jul;15(7):395-401 - PubMed
  45. Theor Appl Genet. 2013 Jan;126(1):23-31 - PubMed
  46. Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8883-8888 - PubMed
  47. Bioinformatics. 2008 Feb 1;24(3):319-24 - PubMed
  48. Front Plant Sci. 2017 Mar 21;8:387 - PubMed
  49. Nat Methods. 2015 Apr;12(4):357-60 - PubMed
  50. Mitochondrion. 2008 Jan;8(1):87-99 - PubMed
  51. G3 (Bethesda). 2016 Jun 01;6(6):1627-33 - PubMed
  52. Nature. 2003 Aug 21;424(6951):901-8 - PubMed
  53. Bioinformatics. 2010 Mar 15;26(6):841-2 - PubMed
  54. Trends Plant Sci. 2016 Nov;21(11):962-973 - PubMed
  55. Annu Rev Plant Biol. 2010;61:561-91 - PubMed
  56. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70 - PubMed
  57. Arabidopsis Book. 2016 Sep 9;14:e0185 - PubMed

Publication Types