Display options
Share it on

Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2113951118.

Tissue compartmentalization enables .

Proceedings of the National Academy of Sciences of the United States of America

Jiagui Li, Beatrice Claudi, Joseph Fanous, Natalia Chicherova, Francesca Romana Cianfanelli, Robert A A Campbell, Dirk Bumann

Affiliations

  1. Biozentrum, University of Basel, CH-4056 Basel, Switzerland.
  2. Biozentrum, University of Basel, CH-4056 Basel, Switzerland [email protected].

PMID: 34911764 DOI: 10.1073/pnas.2113951118

Abstract

Antimicrobial chemotherapy can fail to eradicate the pathogen, even in the absence of antimicrobial resistance. Persisting pathogens can subsequently cause relapsing diseases. In vitro studies suggest various mechanisms of antibiotic persistence, but their in vivo relevance remains unclear because of the difficulty of studying scarce pathogen survivors in complex host tissues. Here, we localized and characterized rare surviving

Copyright © 2021 the Author(s). Published by PNAS.

Keywords: 3D microscopy; antimicrobial chemotherapy; bacterial infection; salmonellosis; treatment failure

Conflict of interest statement

The authors declare no competing interest.

References

  1. Balaban N. Q., et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol.. 2019;17:441–448. - PubMed
  2. Bakkeren E., Diard M., Hardt W. D.. Evolutionary causes and consequences of bacterial antibiotic persistence. Nat. Rev. Microbiol.. 2020;18:479–490. - PubMed
  3. Moldoveanu A. L., Rycroft J. A., Helaine S.. Impact of bacterial persisters on their host. Curr. Opin. Microbiol.. 2021;59:65–71. - PubMed
  4. Lewis K.. The science of antibiotic discovery. Cell. 2020;181:29–45. - PubMed
  5. Prideaux B., Lenaerts A., Dartois V.. Imaging and spatially resolved quantification of drug distribution in tissues by mass spectrometry. Curr. Opin. Chem. Biol.. 2018;44:93–100. - PubMed
  6. Blanc L., et al. High-resolution mapping of fluoroquinolones in TB rabbit lesions reveals specific distribution in immune cell types. eLife. 2018;7:e41115. - PubMed
  7. Mitchison D. A.. The action of antituberculosis drugs in short-course chemotherapy. Tubercle. 1985;66:219–225. - PubMed
  8. Poole K.. Bacterial stress responses as determinants of antimicrobial resistance. J. Antimicrob. Chemother.. 2012;67:2069–2089. - PubMed
  9. Yang J. H., Bening S. C., Collins J. J.. Antibiotic efficacy-context matters. Curr. Opin. Microbiol.. 2017;39:73–80. - PubMed
  10. Radlinski L., Conlon B. P.. Antibiotic efficacy in the complex infection environment. Curr. Opin. Microbiol.. 2018;42:19–24. - PubMed
  11. Fang F. C., Frawley E. R., Tapscott T., Vázquez-Torres A.. Bacterial stress responses during host infection. Cell Host Microbe. 2016;20:133–143. - PubMed
  12. Bumann D., Cunrath O.. Heterogeneity of Salmonella-host interactions in infected host tissues. Curr. Opin. Microbiol.. 2017;39:57–63. - PubMed
  13. Beam J. E., et al. Macrophage-produced peroxynitrite induces antibiotic tolerance and supersedes intrinsic mechanisms of persister formation. Infect. Immun.. 2021;89:e0028621. - PubMed
  14. Eng R. H., Padberg F. T., Smith S. M., Tan E. N., Cherubin C. E.. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob. Agents Chemother.. 1991;35:1824–1828. - PubMed
  15. Sufya N., Allison D. G., Gilbert P.. Clonal variation in maximum specific growth rate and susceptibility towards antimicrobials. J. Appl. Microbiol.. 2003;95:1261–1267. - PubMed
  16. Smirnova G. V., Oktyabrsky O. N.. Relationship between Escherichia coli growth rate and bacterial susceptibility to ciprofloxacin. FEMS Microbiol. Lett.. 2018;365:fnx254. - PubMed
  17. Kaldalu N., Tenson T.. Slow growth causes bacterial persistence. Sci. Signal.. 2019;12:eaay1167. - PubMed
  18. Pontes M. H., Groisman E. A.. A physiological basis for nonheritable antibiotic resistance. MBio. 2020;11:e00817–e00820. - PubMed
  19. Lopatkin A. J., et al. Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate. Nat. Microbiol.. 2019;4:2109–2117. - PubMed
  20. Van den Bergh B., Fauvart M., Michiels J.. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol. Rev.. 2017;41:219–251. - PubMed
  21. Gollan B., Grabe G., Michaux C., Helaine S.. Bacterial persisters and infection: Past, present, and progressing. Annu. Rev. Microbiol.. 2019;73:359–385. - PubMed
  22. Cadena A. M., Fortune S. M., Flynn J. L.. Heterogeneity in tuberculosis. Nat. Rev. Immunol.. 2017;17:691–702. - PubMed
  23. Shan Y., et al. ATP-dependent persister formation in Escherichia coli. MBio. 2017;8:e02267–e02216. - PubMed
  24. Aldridge B. B., et al. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science. 2012;335:100–104. - PubMed
  25. Rego E. H., Audette R. E., Rubin E. J.. Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature. 2017;546:153–157. - PubMed
  26. Bergmiller T., et al. Biased partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity. Science. 2017;356:311–315. - PubMed
  27. Wakamoto Y., et al. Dynamic persistence of antibiotic-stressed mycobacteria. Science. 2013;339:91–95. - PubMed
  28. Nicoloff H., Hjort K., Levin B. R., Andersson D. I.. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat. Microbiol.. 2019;4:504–514. - PubMed
  29. Goormaghtigh F., Van Melderen L.. Single-cell imaging and characterization of Escherichia coli persister cells to ofloxacin in exponential cultures. Sci. Adv.. 2019;5:eaav9462. - PubMed
  30. Bumann D., Fanous J., Li J., Goormaghtigh F.. Antibiotic chemotherapy against heterogeneous pathogen populations in complex host tissues. F1000 Res.. 2019;8:1781. - PubMed
  31. Shi D., Mi G., Wang M., Webster T. J.. In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials. 2019;198:228–249. - PubMed
  32. Stanaway J. D., Reiner R. C., Blacker B. F., Goldberg E. M.. The global burden of typhoid and paratyphoid fevers: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis.. 2019;19:369–381. - PubMed
  33. Feasey N. A., Dougan G., Kingsley R. A., Heyderman R. S., Gordon M. A.. Invasive non-typhoidal salmonella disease: An emerging and neglected tropical disease in Africa. Lancet. 2012;379:2489–2499. - PubMed
  34. Gordon M. A., et al. Non-typhoidal salmonella bacteraemia among HIV-infected Malawian adults: High mortality and frequent recrudescence. AIDS. 2002;16:1633–1641. - PubMed
  35. Butler T.. Treatment of typhoid fever in the 21st century: Promises and shortcomings. Clin. Microbiol. Infect.. 2011;17:959–963. - PubMed
  36. Crump J. A., Sjölund-Karlsson M., Gordon M. A., Parry C. M.. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive salmonella infections. Clin. Microbiol. Rev.. 2015;28:901–937. - PubMed
  37. Thompson C. N., et al. Treatment response in enteric fever in an era of increasing antimicrobial resistance: An individual patient data analysis of 2092 participants enrolled into 4 randomized, controlled trials in Nepal. Clin. Infect. Dis.. 2017;64:1522–1531. - PubMed
  38. Rossi O., et al. Within-host spatiotemporal dynamics of systemic Salmonella infection during and after antimicrobial treatment. J. Antimicrob. Chemother.. 2017;72:3390–3397. - PubMed
  39. Brunner H., Zeiler H. J.. Oral ciprofloxacin treatment for Salmonella typhimurium infection of normal and immunocompromised mice. Antimicrob. Agents Chemother.. 1988;32:57–62. - PubMed
  40. Maskell D. J., Hormaeche C. E.. Relapse following cessation of antibiotic therapy for mouse typhoid in resistant and susceptible mice infected with salmonellae of differing virulence. J. Infect. Dis.. 1985;152:1044–1049. - PubMed
  41. Bonina L., et al. Beta-lactam antibiotics (aztreonam, ampicillin, cefazolin and ceftazidime) in the control and eradication of Salmonella typhimurium in naturally resistant and susceptible mice. J. Antimicrob. Chemother.. 1990;25:813–823. - PubMed
  42. Claudi B., et al. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell. 2014;158:722–733. - PubMed
  43. Ragan T., et al. Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat. Methods. 2012;9:255–258. - PubMed
  44. Kaiser P., et al. Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment. PLoS Biol.. 2014;12:e1001793. - PubMed
  45. Griffin A. J., Li L. X., Voedisch S., Pabst O., McSorley S. J.. Dissemination of persistent intestinal bacteria via the mesenteric lymph nodes causes typhoid relapse. Infect. Immun.. 2011;79:1479–1488. - PubMed
  46. Arenas I., et al. In vitro and in vivo antibiotic capacity of two host defence peptides. Antimicrob. Agents Chemother.. 2020;64:e00145–e00120. - PubMed
  47. Arena E. T., et al. Bioimage analysis of Shigella infection reveals targeting of colonic crypts. Proc. Natl. Acad. Sci. U.S.A.. 2015;112:E3282–E3290. - PubMed
  48. Cronan M. R., et al. Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. Immunity. 2016;45:861–876. - PubMed
  49. Fung C., et al. High-resolution mapping reveals that microniches in the gastric glands control Helicobacter pylori colonization of the stomach. PLoS Biol.. 2019;17:e3000231. - PubMed
  50. Wang W., et al. Three‐dimensional quantitative imaging of native microbiota distribution in the gut. 2021;133:3092–3098. - PubMed
  51. Ward A. I., et al. In vivo analysis of Trypanosoma cruzi persistence foci at single-cell resolution. mBio. 2020;11:e01242–e20. - PubMed
  52. Wendland M., Bumann D.. Optimization of GFP levels for analyzing Salmonella gene expression during an infection. FEBS Lett.. 2002;521:105–108. - PubMed
  53. Smith K., et al. CIDRE: An illumination-correction method for optical microscopy. Nat. Methods. 2015;12:404–406. - PubMed
  54. Gade P. S., Robertson A. M., Chuang C. Y.. Multiphoton imaging of collagen, elastin, and calcification in intact soft-tissue samples. Curr. Protoc. Cytom.. 2019;87:e51. - PubMed
  55. Thöne F., Schwanhäusser B., Becker D., Ballmaier M., Bumann D.. FACS-isolation of Salmonella-infected cells with defined bacterial load from mouse spleen. J. Microbiol. Methods. 2007;71:220–224. - PubMed
  56. Sheppard M., et al. Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cell. Microbiol.. 2003;5:593–600. - PubMed
  57. Helaine S., et al. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science. 2014;343:204–208. - PubMed
  58. Lewis S. M., Williams A., Eisenbarth S. C.. Structure and function of the immune system in the spleen. Sci. Immunol.. 2019;4:eaau6085. - PubMed
  59. den Haan J. M., Kraal G.. Innate immune functions of macrophage subpopulations in the spleen. J. Innate Immun.. 2012;4:437–445. - PubMed
  60. Nix R. N., Altschuler S. E., Henson P. M., Detweiler C. S.. Hemophagocytic macrophages harbor Salmonella enterica during persistent infection. PLoS Pathog.. 2007;3:e193. - PubMed
  61. Burton N. A., et al. Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice. Cell Host Microbe. 2014;15:72–83. - PubMed
  62. Moine P., et al. In vivo efficacy of a broad-spectrum cephalosporin, ceftriaxone, against penicillin-susceptible and -resistant strains of Streptococcus pneumoniae in a mouse pneumonia model. Antimicrob. Agents Chemother.. 1994;38:1953–1958. - PubMed
  63. Meinen J. B., McClure J. T., Rosin E.. Pharmacokinetics of enrofloxacin in clinically normal dogs and mice and drug pharmacodynamics in neutropenic mice with Escherichia coli and staphylococcal infections. Am. J. Vet. Res.. 1995;56:1219–1224. - PubMed
  64. Trouchon T., Lefebvre S.. A review of enrofloxacin for veterinary use. Open J. Vet. Med.. 2016;6:40–58. - PubMed
  65. Pirro F., Edingloh M., Schmeer N.. Bactericidal and inhibitory activity of enrofloxacin and other fluoroquinolones in small animal pathogens. Compendium Cont. Edn Pract. Vet.. 1999;21:19–25. - PubMed
  66. Kanvatirth P., et al. Dual role of splenic mononuclear and polymorphonuclear cells in the outcome of ciprofloxacin treatment of Salmonella enterica infections. J. Antimicrob. Chemother.. 2020;75:2914–2918. - PubMed
  67. Prideaux B., et al. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat. Med.. 2015;21:1223–1227. - PubMed
  68. Nolte M. A., et al. A conduit system distributes chemokines and small blood-borne molecules through the splenic white pulp. J. Exp. Med.. 2003;198:505–512. - PubMed
  69. Schmidt E. E., MacDonald I. C., Groom A. C.. Comparative aspects of splenic microcirculatory pathways in mammals: The region bordering the white pulp. Scanning Microsc.. 1993;7:613–628. - PubMed
  70. Beristain-Covarrubias N., et al. Salmonella-induced thrombi in mice develop asynchronously in the spleen and liver and are not effective bacterial traps. Blood. 2019;133:600–604. - PubMed
  71. Drusano G. L., Johnson D. E., Rosen M., Standiford H. C.. Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob. Agents Chemother.. 1993;37:483–490. - PubMed
  72. Preston S. L., et al. Pharmacodynamics of levofloxacin: A new paradigm for early clinical trials. JAMA. 1998;279:125–129. - PubMed
  73. Diver J. M., Wise R.. Morphological and biochemical changes in Escherichia coli after exposure to ciprofloxacin. J. Antimicrob. Chemother.. 1986;18:31–41. - PubMed
  74. Liu X., et al. Pharmacokinetics and pharmacodynamics of enrofloxacin treatment of Escherichia coli in a murine thigh infection modeling. BMC Vet. Res.. 2021;17:212. - PubMed
  75. Brown S. A.. Fluoroquinolones in animal health. J. Vet. Pharmacol. Ther.. 1996;19:1–14. - PubMed
  76. Barat S., et al. Immunity to intracellular Salmonella depends on surface-associated antigens. PLoS Pathog.. 2012;8:e1002966. - PubMed
  77. Dörr T., Lewis K., Vulić M.. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet.. 2009;5:e1000760. - PubMed
  78. Waddington C. S., et al. An outpatient, ambulant-design, controlled human infection model using escalating doses of Salmonella Typhi challenge delivered in sodium bicarbonate solution. Clin. Infect. Dis.. 2014;58:1230–1240. - PubMed
  79. Dobinson H. C., et al. Evaluation of the clinical and microbiological response to Salmonella Paratyphi A infection in the first paratyphoid human challenge model. Clin. Infect. Dis.. 2017;64:1066–1073. - PubMed
  80. Crump J. A., et al. Clinical response and outcome of infection with Salmonella enterica serotype Typhi with decreased susceptibility to fluoroquinolones: A United States Foodnet Multicenter Retrospective Cohort Study. Antimicrob. Agents Chemother.. 2008;52:1278–1284. - PubMed
  81. Bregante M. A., et al. Comparative pharmacokinetics of enrofloxacin in mice, rats, rabbits, sheep, and cows. Am. J. Vet. Res.. 1999;60:1111–1116. - PubMed
  82. Ogino T., Arai T.. Pharmacokinetic interactions of flunixin meglumine and enrofloxacin in ICR mice. Exp. Anim.. 2007;56:79–84. - PubMed
  83. Forrest A., et al. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob. Agents Chemother.. 1993;37:1073–1081. - PubMed
  84. Aminimanizani A., Beringer P., Jelliffe R.. Comparative pharmacokinetics and pharmacodynamics of the newer fluoroquinolone antibacterials. Clin. Pharmacokinet.. 2001;40:169–187. - PubMed
  85. Trouchon T., Lefebvre Sb.. A review of enrofloxacin for veterinary use. Open J. Vet. Med.. 2016;6:40–58. - PubMed
  86. Vlazaki M., et al. A data-based mathematical modelling study to quantify the effects of ciprofloxacin and ampicillin on the within-host dynamics of Salmonella enterica during treatment and relapse. J. R. Soc. Interface. 2020;17:20200299. - PubMed
  87. Cunrath O., Bumann D.. Host resistance factor SLC11A1 restricts Salmonella growth through magnesium deprivation. Science. 2019;366:995–999. - PubMed
  88. Shea J. E., Beuzon C. R., Gleeson C., Mundy R., Holden D. W.. Influence of the Salmonella typhimurium pathogenicity island 2 type III secretion system on bacterial growth in the mouse. Infect. Immun.. 1999;67:213–219. - PubMed
  89. Bumann D.. Heterogeneous host-pathogen encounters: Act locally, think globally. Cell Host Microbe. 2015;17:13–19. - PubMed
  90. Wu Y., Vulić M., Keren I., Lewis K.. Role of oxidative stress in persister tolerance. Antimicrob. Agents Chemother.. 2012;56:4922–4926. - PubMed
  91. Dwyer D. J., et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. U.S.A.. 2014;111:E2100–E2109. - PubMed
  92. Soncini F. C., Véscovi E. G., Groisman E. A.. Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J. Bacteriol.. 1995;177:4364–4371. - PubMed
  93. Groisman E. A., et al. Bacterial Mg2+ homeostasis, transport, and virulence. Annu. Rev. Genet.. 2013;47:625–646. - PubMed
  94. Choi J., Groisman E. A.. Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence. Mol. Microbiol.. 2016;101:1024–1038. - PubMed
  95. Sakoulas G., Kumaraswamy M., Kousha A., Nizet V.. Interaction of antibiotics with innate host defense factors against Salmonella enterica Serotype Newport. MSphere. 2017;2:e00410–e00417. - PubMed
  96. Prost L. R., Daley M. E., Bader M. W., Klevit R. E., Miller S. I.. The PhoQ histidine kinases of Salmonella and Pseudomonas spp. are structurally and functionally different: Evidence that pH and antimicrobial peptide sensing contribute to mammalian pathogenesis. Mol. Microbiol.. 2008;69:503–519. - PubMed
  97. Conlan J. W.. Critical roles of neutrophils in host defense against experimental systemic infections of mice by Listeria monocytogenes, Salmonella typhimurium, and Yersinia enterocolitica. Infect. Immun.. 1997;65:630–635. - PubMed
  98. Vassiloyanakopoulos A. P., Okamoto S., Fierer J.. The crucial role of polymorphonuclear leukocytes in resistance to Salmonella dublin infections in genetically susceptible and resistant mice. Proc. Natl. Acad. Sci. U.S.A.. 1998;95:7676–7681. - PubMed
  99. McCormack R. M., et al. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. eLife. 2015;4:e06508. - PubMed
  100. Dougan G., John V., Palmer S., Mastroeni P.. Immunity to salmonellosis. Immunol. Rev.. 2011;240:196–210. - PubMed
  101. Gilchrist J. J., MacLennan C. A., Hill A. V.. Genetic susceptibility to invasive Salmonella disease. Nat. Rev. Immunol.. 2015;15:452–463. - PubMed
  102. Rossi O., Grant A. J., Mastroeni P.. Effect of in vivo neutralization of tumor necrosis alpha on the efficacy of antibiotic treatment in systemic Salmonella enterica infections. Pathog. Dis.. 2017;75:ftx002. - PubMed
  103. Banche G., Allizond V., Mandras N., Tullio V., Cuffini A. M.. Host immune modulation by antimicrobial drugs: Current knowledge and implications for antimicrobial chemotherapy. Curr. Opin. Pharmacol.. 2014;18:159–166. - PubMed
  104. Matarazzo L., et al. Therapeutic synergy between antibiotics and pulmonary toll-like receptor 5 stimulation in antibiotic-sensitive or -resistant pneumonia. Front. Immunol.. 2019;10:723. - PubMed
  105. Drusano G. L., et al. Interaction of drug- and granulocyte-mediated killing of Pseudomonas aeruginosa in a murine pneumonia model. J. Infect. Dis.. 2014;210:1319–1324. - PubMed
  106. Ankomah P., Levin B. R.. Exploring the collaboration between antibiotics and the immune response in the treatment of acute, self-limiting infections. Proc. Natl. Acad. Sci. U.S.A.. 2014;111:8331–8338. - PubMed
  107. Levin B. R., Baquero F., Ankomah P. P., McCall I. C.. Phagocytes, antibiotics, and self-limiting bacterial infections. Trends Microbiol.. 2017;25:878–892. - PubMed
  108. Willer Y., Müller B., Bumann D.. Intestinal inflammation responds to microbial tissue load independent of pathogen/non-pathogen discrimination. PLoS One. 2012;7:e35992. - PubMed
  109. Dolowschiak T., et al. IFN-γ hinders recovery from mucosal inflammation during antibiotic therapy for Salmonella gut infection. Cell Host Microbe. 2016;20:238–249. - PubMed
  110. Feehan K. T., Gilroy D. W.. Is resolution the end of inflammation?. Trends Mol. Med.. 2019;25:198–214. - PubMed
  111. Aarestrup F. M., Wiuff C., Mølbak K., Threlfall E. J.. Is it time to change fluoroquinolone breakpoints for Salmonella spp.?. Antimicrob. Agents Chemother.. 2003;47:827–829. - PubMed
  112. Aichele P., et al. Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J. Immunol.. 2003;171:1148–1155. - PubMed
  113. Fischer M. B., et al. The presence of MOMA-2+ macrophages in the outer B cell zone and protection of the splenic micro-architecture from LPS-induced destruction depend on secreted IgM. Eur. J. Immunol.. 2007;37:2825–2833. - PubMed
  114. Stapels D. A. C., et al. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science. 2018;362:1156–1160. - PubMed
  115. Bumann D., Schothorst J.. Intracellular salmonella metabolism. Cell. Microbiol.. 2017;19:e12766. - PubMed
  116. Pham T. H. M., et al. Salmonella-driven polarization of granuloma macrophages antagonizes TNF-mediated pathogen restriction during persistent infection. Cell Host Microbe. 2020;27:54–67.e5. - PubMed
  117. Goldberg M. F., et al. Salmonella persist in activated macrophages in T cell-sparse granulomas but are contained by surrounding CXCR3 ligand-positioned Th1 cells. Immunity. 2018;49:1090–1102.e7. - PubMed
  118. Mastroeni P., Villarreal-Ramos B., Hormaeche C. E.. Effect of late administration of anti-TNF alpha antibodies on a Salmonella infection in the mouse model. Microb. Pathog.. 1993;14:473–480. - PubMed
  119. Sagiv J. Y., et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep.. 2015;10:562–573. - PubMed
  120. Ciardiello D., Elez E., Tabernero J., Seoane J.. Clinical development of therapies targeting TGFβ: Current knowledge and future perspectives. Ann. Oncol.. 2020;31:1336–1349. - PubMed
  121. Domínguez-Andrés J., et al. Inflammatory Ly6Chigh monocytes protect against candidiasis through IL-15-driven NK cell/neutrophil activation. Immunity. 2017;46:1059–1072.e4. - PubMed
  122. Knudson K. M., Hodge J. W., Schlom J., Gameiro S. R.. Rationale for IL-15 superagonists in cancer immunotherapy. Expert Opin. Biol. Ther.. 2020;20:705–709. - PubMed
  123. Easmon C. S., Blowers A.. Ciprofloxacin treatment of systemic salmonella infection in sensitive and resistance mice. J. Antimicrob. Chemother.. 1985;16:615–619. - PubMed
  124. Nath G., et al. Does Salmonella Typhi primarily reside in the liver of chronic typhoid carriers?. J. Infect. Dev. Ctries.. 2010;4:259–261. - PubMed
  125. Nath G, Pratap CB, Patel SK, Gulati AK, Tripathi SK. Isolation of Salmonella typhi from apparently healthy liver. Inf. Genetics Evol.. 2011;11:2103–2105. - PubMed
  126. Crawford R. W., et al. Gallstones play a significant role in Salmonella spp. gallbladder colonization and carriage. Proc. Natl. Acad. Sci. U.S.A.. 2010;107:4353–4358. - PubMed
  127. Ueda H. R., et al. Whole-brain profiling of cells and circuits in mammals by tissue clearing and light-sheet microscopy. Neuron. 2020;106:369–387. - PubMed
  128. Malherbe S. T., et al. Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat. Med.. 2016;22:1094–1100. - PubMed
  129. Steeb B., et al. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog.. 2013;9:e1003301. - PubMed
  130. Hoiseth S. K., Stocker B. A.. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981;291:238–239. - PubMed
  131. Kröger C., et al. The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc. Natl. Acad. Sci. U.S.A.. 2012;109:E1277–E1286. - PubMed
  132. Rollenhagen C., Bumann D.. Salmonella enterica highly expressed genes are disease specific. Infect. Immun.. 2006;74:1649–1660. - PubMed
  133. Rollenhagen C., Sörensen M., Rizos K., Hurvitz R., Bumann D.. Antigen selection based on expression levels during infection facilitates vaccine development for an intracellular pathogen. Proc. Natl. Acad. Sci. U.S.A.. 2004;101:8739–8744. - PubMed
  134. Cianfanelli F. R., Cunrath O., Bumann D.. Efficient dual-negative selection for bacterial genome editing. BMC Microbiol.. 2020;20:129. - PubMed
  135. Nanchen A., Schicker A., Sauer U.. Nonlinear dependency of intracellular fluxes on growth rate in miniaturized continuous cultures of Escherichia coli. Appl. Environ. Microbiol.. 2006;72:1164–1172. - PubMed
  136. Han Y., et al. The logic of single-cell projections from visual cortex. Nature. 2018;556:51–56. - PubMed
  137. de Olmos J., Hardy H., Heimer L.. The afferent connections of the main and the accessory olfactory bulb formations in the rat: An experimental HRP-study. J. Comp. Neurol.. 1978;181:213–244. - PubMed

Publication Types