Display options
Share it on

Virology. 2021 Sep;561:117-124. doi: 10.1016/j.virol.2020.11.010. Epub 2021 Feb 05.

Designing multivalent immunogens for alphavirus vaccine optimization.

Virology

C M Read, Kenneth Plante, Grace Rafael, Shannan L Rossi, Werner Braun, Scott C Weaver, Catherine H Schein

Affiliations

  1. Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA.
  2. Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity (IHII), University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA.
  3. Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Department of Pathology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity (IHII), University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA.
  4. Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA.
  5. Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity (IHII), University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA.
  6. Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity (IHII), University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA. Electronic address: [email protected].

PMID: 33823988 PMCID: PMC8277671 DOI: 10.1016/j.virol.2020.11.010

Abstract

There is a pressing need for vaccines against mosquito-borne alphaviruses such as Venezualen and eastern equine encephalitis viruses (VEEV, EEEV). We demonstrate an approach to vaccine development based on physicochemical properties (PCP) of amino acids to design a PCP-consensus sequence of the epitope-rich B domain of the VEEV major antigenic E2 protein. The consensus "spike" domain was incorporated into a live-attenuated VEEV vaccine candidate (ZPC/IRESv1). Mice inoculated with either ZPC/IRESv1 or the same virus containing the consensus E2 protein fragment (VEEVconE2) were protected against lethal challenge with VEEV strains ZPC-738 and 3908, and Mucambo virus (MUCV, related to VEEV), and had comparable neutralizing antibody titers against each virus. Both vaccines induced partial protection against Madariaga virus (MADV), a close relative of EEEV, lowering mortality from 60% to 20%. Thus PCP-consensus sequences can be integrated into a replicating virus that could, with further optimization, provide a broad-spectrum vaccine against encephalitic alphaviruses.

Copyright © 2021 Elsevier Inc. All rights reserved.

Keywords: Alphaviruses; Computational and structural vaccine design; Eastern equine encephalitis virus; Murine model; Physicochemical property (PCP) consensus; Venezuelan equine encephalitis virus

References

  1. Vaccine. 2020 Apr 9;38(17):3378-3386 - PubMed
  2. PLoS Negl Trop Dis. 2015 May 28;9(5):e0003797 - PubMed
  3. PLoS One. 2010 Jul 27;5(7):e11815 - PubMed
  4. mBio. 2014 Aug 05;5(4):e01119-14 - PubMed
  5. PLoS Negl Trop Dis. 2017 Aug 3;11(8):e0005693 - PubMed
  6. BioDrugs. 2013 Dec;27(6):565-83 - PubMed
  7. Expert Rev Vaccines. 2014 Dec;13(12):1423-5 - PubMed
  8. J Virol. 2013 Jan;87(1):395-402 - PubMed
  9. Virology. 2010 Jul 20;403(1):85-91 - PubMed
  10. Vaccines (Basel). 2020 Sep 02;8(3): - PubMed
  11. Am J Trop Med Hyg. 1964 Sep;13:723-7 - PubMed
  12. J Infect Dis. 2011 Aug 1;204(3):442-50 - PubMed
  13. J Mol Biol. 2010 Feb 26;396(3):550-63 - PubMed
  14. Vaccine. 2008 Sep 15;26(39):5030-9 - PubMed
  15. Protein Eng Des Sel. 2013 Jun;26(6):389-99 - PubMed
  16. J Virol. 2002 Jun;76(12):6387-92 - PubMed
  17. Virology. 2013 Mar 15;437(2):81-8 - PubMed
  18. Vaccine. 2012 Sep 14;30(42):6081-7 - PubMed
  19. Antiviral Res. 2012 Jun;94(3):242-57 - PubMed
  20. Methods Mol Biol. 2016;1387:1-10 - PubMed
  21. N Engl J Med. 2013 Aug 22;369(8):732-44 - PubMed
  22. J Infect Dis. 2005 Sep 1;192 Suppl 1:S17-21 - PubMed
  23. J Virol. 2014 Sep 1;88(17):9616-23 - PubMed
  24. Nature. 2014 Mar 13;507(7491):201-6 - PubMed
  25. BMC Bioinformatics. 2012;13 Suppl 13:S9 - PubMed
  26. Expert Rev Vaccines. 2017 May;16(5):503-513 - PubMed
  27. Front Microbiol. 2017 Jan 26;8:81 - PubMed
  28. Vaccine. 2009 Aug 6;27(36):4879-82 - PubMed
  29. Virology. 2011 Oct 25;419(2):117-25 - PubMed
  30. Proteins. 2012 May;80(5):1308-15 - PubMed
  31. Vaccine. 2009 Jul 9;27(32):4309-19 - PubMed
  32. J Virol. 2013 May;87(9):4952-64 - PubMed
  33. Vaccine. 2012 Nov 26;30(50):7271-7 - PubMed
  34. One Health. 2017 Jul 01;4:1-13 - PubMed
  35. Virol J. 2014 Dec 05;11:215 - PubMed
  36. Am J Trop Med Hyg. 2014 Sep;91(3):442-50 - PubMed
  37. Antiviral Res. 2020 Oct;182:104905 - PubMed
  38. Nat Commun. 2016 Sep 22;7:12838 - PubMed
  39. Vaccines (Basel). 2020 Jun 03;8(2): - PubMed
  40. Antiviral Res. 2019 Mar;163:125-139 - PubMed
  41. Vaccine. 2011 Sep 23;29(42):7229-41 - PubMed
  42. J Virol. 2013 Mar;87(6):2986-93 - PubMed
  43. J Virol. 2018 Jan 30;92(4): - PubMed
  44. DNA Cell Biol. 2005 Apr;24(4):256-63 - PubMed
  45. Bioorg Med Chem. 2016 Feb 15;24(4):570-7 - PubMed
  46. Virology. 2015 Oct;484:80-85 - PubMed
  47. J Mol Model. 2006 Sep;12(6):921-9 - PubMed
  48. PLoS One. 2012;7(5):e37398 - PubMed
  49. Vaccine. 2009 Jun 24;27(31):4152-60 - PubMed
  50. Int J Bioinform Res Appl. 2010;6(2):134-46 - PubMed
  51. J Virol. 2004 Jan;78(1):1-8 - PubMed
  52. J Med Chem. 2012 Apr 12;55(7):3535-45 - PubMed
  53. Hum Vaccin Immunother. 2019;15(10):2351-2358 - PubMed
  54. Mol Immunol. 2018 Jul;99:1-8 - PubMed
  55. Curr Opin Virol. 2012 Jun;2(3):363-7 - PubMed
  56. Vaccine. 1996 Mar;14(4):337-43 - PubMed

Publication Types

Grant support