Display options
Share it on

Clin Transl Immunology. 2021 May 16;10(5):e1285. doi: 10.1002/cti2.1285. eCollection 2021.

Dynamics of antibodies to SARS-CoV-2 in convalescent plasma donors.

Clinical & translational immunology

Maurice Steenhuis, Gerard van Mierlo, Ninotska Il Derksen, Pleuni Ooijevaar-de Heer, Simone Kruithof, Floris L Loeff, Lea C Berkhout, Federica Linty, Chantal Reusken, Johan Reimerink, Boris Hogema, Hans Zaaijer, Leo van de Watering, Francis Swaneveld, Marit J van Gils, Berend Jan Bosch, S Marieke van Ham, Anja Ten Brinke, Gestur Vidarsson, Ellen C van der Schoot, Theo Rispens

Affiliations

  1. Department of Immunopathology Sanquin Research Amsterdam The Netherlands.
  2. Landsteiner Laboratory Amsterdam University Medical Centre University of Amsterdam Amsterdam The Netherlands.
  3. Department of Experimental Immunohematology Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Centre Amsterdam The Netherlands.
  4. Department of Infectious Diseases Public Health Service region Utrecht Utrecht The Netherlands.
  5. Department of Virology Sanquin Diagnostic Services Amsterdam The Netherlands.
  6. Sanquin Blood Supply Foundation and Amsterdam University Medical Centre Amsterdam The Netherlands.
  7. Sanquin Blood Bank Unit Transfusion Medicine Leiden The Netherlands.
  8. Department of Transfusion Medicine Sanquin Blood Bank Amsterdam The Netherlands.
  9. Department of Medical Microbiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.
  10. Virology Division Department of Infectious Diseases and Immunology Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands.

PMID: 34026115 PMCID: PMC8126762 DOI: 10.1002/cti2.1285

Abstract

OBJECTIVES: Characterisation of the human antibody response to SARS-CoV-2 infection is vital for serosurveillance purposes and for treatment options such as transfusion with convalescent plasma or immunoglobulin products derived from convalescent plasma. In this study, we longitudinally and quantitatively analysed antibody responses in RT-PCR-positive SARS-CoV-2 convalescent adults during the first 250 days after onset of symptoms.

METHODS: We measured antibody responses to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the nucleocapsid protein in 844 longitudinal samples from 151 RT-PCR-positive SARS-CoV-2 convalescent adults. With a median of 5 (range 2-18) samples per individual, this allowed quantitative analysis of individual longitudinal antibody profiles. Kinetic profiles were analysed by mixed-effects modelling.

RESULTS: All donors were seropositive at the first sampling moment, and only one donor seroreverted during follow-up analysis. Anti-RBD IgG and anti-nucleocapsid IgG levels declined with median half-lives of 62 and 59 days, respectively, 2-5 months after symptom onset, and several-fold variation in half-lives of individuals was observed. The rate of decline of antibody levels diminished during extended follow-up, which points towards long-term immunological memory. The magnitude of the anti-RBD IgG response correlated well with neutralisation capacity measured in a classic plaque reduction assay and in an in-house developed competitive assay.

CONCLUSION: The result of this study gives valuable insight into the long-term longitudinal response of antibodies to SARS-CoV-2.

© 2021 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.

Keywords: ACE2‐competitive ELISA; COVID‐19; antibodies; longitudinal; neutralisation

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Lancet. 2020 Feb 22;395(10224):565-574 - PubMed
  2. J Clin Invest. 2020 Sep 1;130(9):4791-4797 - PubMed
  3. Nat Med. 2020 Jun;26(6):845-848 - PubMed
  4. Clin Infect Dis. 2021 Aug 2;73(3):e531-e539 - PubMed
  5. Science. 2020 Oct 23;370(6515): - PubMed
  6. J Immunol. 2020 Dec 15;205(12):3491-3499 - PubMed
  7. Cell Mol Immunol. 2020 Jun;17(6):613-620 - PubMed
  8. Science. 2021 Feb 5;371(6529): - PubMed
  9. Cell Rep Med. 2021 Jul 20;2(7):100329 - PubMed
  10. Nature. 2020 Aug;584(7821):463-469 - PubMed
  11. Emerg Infect Dis. 2020 Oct;26(10):2484-2487 - PubMed
  12. Nat Immunol. 2021 Jan;22(1):67-73 - PubMed
  13. Nat Commun. 2020 Nov 27;11(1):6044 - PubMed
  14. Front Immunol. 2020 Apr 24;11:879 - PubMed
  15. Blood. 2020 Nov 26;136(22):2588-2591 - PubMed
  16. Sci Immunol. 2020 Jun 11;5(48): - PubMed
  17. Clin Chim Acta. 2020 Aug;507:164-166 - PubMed
  18. Front Immunol. 2017 Aug 02;8:877 - PubMed
  19. Cell. 2021 Jan 7;184(1):169-183.e17 - PubMed
  20. Methods Mol Biol. 2020;2099:107-116 - PubMed
  21. Biomed Pharmacother. 2020 Oct;130:110629 - PubMed
  22. Chin Med J (Engl). 2020 May 5;133(9):1015-1024 - PubMed
  23. Circulation. 2020 Nov 10;142(19):1881-1884 - PubMed
  24. J Clin Invest. 2020 Dec 1;130(12):6728-6738 - PubMed
  25. Nat Commun. 2011 Dec 20;2:599 - PubMed
  26. N Engl J Med. 2007 Sep 13;357(11):1162-3 - PubMed
  27. Infection. 2021 Feb;49(1):75-82 - PubMed
  28. Front Immunol. 2019 Apr 05;10:721 - PubMed
  29. Cell Rep. 2021 Mar 2;34(9):108790 - PubMed
  30. Cochrane Database Syst Rev. 2020 Oct 12;10:CD013600 - PubMed
  31. PLoS Comput Biol. 2012;8(3):e1002418 - PubMed
  32. Open Forum Infect Dis. 2020 Aug 27;7(9):ofaa387 - PubMed
  33. Sci Transl Med. 2020 Nov 18;12(570): - PubMed
  34. PLoS One. 2020 Dec 31;15(12):e0244126 - PubMed
  35. Science. 2020 Aug 7;369(6504):643-650 - PubMed
  36. Immunity. 2020 Jun 16;52(6):971-977.e3 - PubMed
  37. Nat Commun. 2021 Mar 22;12(1):1813 - PubMed
  38. Nature. 2020 May;581(7807):215-220 - PubMed
  39. JAMA. 2020 Aug 4;324(5):455-457 - PubMed

Publication Types