Display options
Share it on

Gut. 2021 Oct;70(10):1823-1832. doi: 10.1136/gutjnl-2020-320805. Epub 2020 Nov 23.

Spatial profiling of gastric cancer patient-matched primary and locoregional metastases reveals principles of tumour dissemination.

Gut

Raghav Sundar, Drolaiz Hw Liu, Gordon Ga Hutchins, Hayley L Slaney, Arnaldo Ns Silva, Jan Oosting, Jeremy D Hayden, Lindsay C Hewitt, Cedric Cy Ng, Amrita Mangalvedhekar, Sarah B Ng, Iain Bh Tan, Patrick Tan, Heike I Grabsch

Affiliations

  1. Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore.
  2. Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.
  3. Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
  4. The N.1 Institute for Health, National University of Singapore, Singapore.
  5. Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands.
  6. Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, West Yorkshire, UK.
  7. Department of Surgery, University of Cambridge, Cambridge University Hospitals, Addenbrookes, Cambridge, UK.
  8. Department of Pathology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands.
  9. Department of Upper Gastrointestinal Surgery, Institute of Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
  10. Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer Centre Singapore, Singapore.
  11. Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore.
  12. Division of Medical Oncology, National Cancer Centre Singapore, Singapore.
  13. Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore [email protected] [email protected].
  14. SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore.
  15. Cancer Science Institute of Singapore, National University of Singapore, Singapore.
  16. Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands [email protected] [email protected].

PMID: 33229445 PMCID: PMC8458060 DOI: 10.1136/gutjnl-2020-320805

Abstract

OBJECTIVE: Endoscopic mucosal biopsies of primary gastric cancers (GCs) are used to guide diagnosis, biomarker testing and treatment. Spatial intratumoural heterogeneity (ITH) may influence biopsy-derived information. We aimed to study ITH of primary GCs and matched lymph node metastasis (LN

DESIGN: GC resection samples were annotated to identify primary tumour superficial (PT

RESULTS: NanoString profiling of 64 GCs revealed no differences between PT

CONCLUSION: In GC, regional lymph node metastases are likely to originate from deeper subregions of the primary tumour. Future clinical trials of novel targeted therapies must consider assessment of deeper subregions of the primary tumour and/or metastases as several therapeutically relevant genes are only mutated, overexpressed or amplified in these regions.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Keywords: endoscopy; gastric cancer; histopathology; molecular pathology

Conflict of interest statement

Competing interests: PT has stock and other ownership interests in Tempus Healthcare, research funding from Kyowa Hakko Kirin and Thermo Fisher Scientific, and patents/other intellectual property thro

References

  1. Br J Cancer. 2014 Feb 18;110(4):967-75 - PubMed
  2. Nat Genet. 2000 May;25(1):25-9 - PubMed
  3. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 - PubMed
  4. J Cancer. 2019 Mar 3;10(7):1642-1650 - PubMed
  5. Gastric Cancer. 2016 Apr;19(2):553-560 - PubMed
  6. Front Oncol. 2020 May 15;10:763 - PubMed
  7. BMJ Open Gastroenterol. 2020 Aug;7(1): - PubMed
  8. Gastric Cancer. 2019 Nov;22(6):1193-1203 - PubMed
  9. JAMA Netw Open. 2020 Apr 1;3(4):e203652 - PubMed
  10. J Clin Oncol. 2019 Nov 20;37(33):3066-3068 - PubMed
  11. Nat Med. 2015 May;21(5):449-56 - PubMed
  12. Nat Genet. 2020 Jul;52(7):692-700 - PubMed
  13. Lancet Oncol. 2018 May;19(5):629-638 - PubMed
  14. Cancer Discov. 2015 Aug;5(8):821-831 - PubMed
  15. Cancer Discov. 2017 Jun;7(6):558-560 - PubMed
  16. Clin Cancer Res. 2018 May 1;24(9):2214-2224 - PubMed
  17. Front Med (Lausanne). 2017 Apr 10;4:39 - PubMed
  18. PLoS One. 2013 Dec 18;8(12):e84189 - PubMed
  19. Lung Cancer. 2018 Jul;121:54-60 - PubMed
  20. Nature. 2015 Apr 16;520(7547):353-357 - PubMed
  21. Cancer Discov. 2018 Jan;8(1):37-48 - PubMed
  22. Nat Genet. 2020 Jan;52(1):74-83 - PubMed
  23. Nature. 2014 Sep 11;513(7517):202-9 - PubMed
  24. Cancer Discov. 2018 Jan;8(1):14-16 - PubMed
  25. N Engl J Med. 2019 Oct 24;381(17):1632-1643 - PubMed
  26. Cell. 1990 Jun 1;61(5):759-67 - PubMed
  27. Front Oncol. 2020 Feb 25;10:225 - PubMed
  28. Gastric Cancer. 2019 Mar;22(2):323-334 - PubMed
  29. Cancer Med. 2018 Oct;7(10):4914-4923 - PubMed
  30. Cancer Res. 2018 Oct 15;78(20):5970-5979 - PubMed
  31. Nucleic Acids Res. 2020 Jan 8;48(D1):D498-D503 - PubMed
  32. J Natl Compr Canc Netw. 2010 Apr;8(4):378-409 - PubMed
  33. Br J Cancer. 2020 Feb;122(3):413-420 - PubMed
  34. Wiley Interdiscip Rev Syst Biol Med. 2012 Nov-Dec;4(6):565-83 - PubMed
  35. Methods. 2001 Dec;25(4):402-8 - PubMed
  36. Mod Pathol. 2012 May;25(5):637-50 - PubMed
  37. J Clin Oncol. 2011 Apr 1;29(10):1261-70 - PubMed
  38. CA Cancer J Clin. 2018 Nov;68(6):394-424 - PubMed
  39. Nat Commun. 2020 Jan 16;11(1):139 - PubMed
  40. Gastric Cancer. 2019 Jan;22(1):1-9 - PubMed
  41. Sci Adv. 2020 Jan 08;6(2):eaax6232 - PubMed
  42. Science. 2017 Jul 28;357(6349):409-413 - PubMed
  43. Signal Transduct Target Ther. 2019 Sep 13;4:34 - PubMed
  44. BMC Bioinformatics. 2010 Jan 29;11:67 - PubMed
  45. Ann Surg. 2018 Jan;267(1):114-121 - PubMed

Publication Types