Display options
Share it on

BMC Sports Sci Med Rehabil. 2021 Dec 18;13(1):161. doi: 10.1186/s13102-021-00390-1.

Identification of muscle weakness in older adults from normalized upper and lower limbs strength: a cross-sectional study.

BMC sports science, medicine & rehabilitation

Pedro Pugliesi Abdalla, Lucimere Bohn, Leonardo Santos Lopes da Silva, André Pereira Dos Santos, Marcio Fernando Tasinafo Junior, Ana Claudia Rossini Venturini, Anderson Dos Santos Carvalho, David Martinez Gomez, Jorge Mota, Dalmo Roberto Lopes Machado

Affiliations

  1. College of Nursing at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil. [email protected].
  2. Faculty of Sports, University of Porto, Porto, Portugal. [email protected].
  3. Faculty of Sports, University of Porto, Porto, Portugal.
  4. Faculty of Phycology, Education and Sport, University Lusófona of Porto, Porto, Portugal.
  5. School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
  6. College of Nursing at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
  7. Physical Education Course, Paulista University, São José do Rio Preto, SP, Brazil.
  8. School of Medicine, Autonomous University of Madrid, Madrid, Spain.

PMID: 34922598 DOI: 10.1186/s13102-021-00390-1

Abstract

BACKGROUND: To propose cut-off points for older adults' weakness for upper and lower limbs muscle strength normalized by body size with the ratio standard/muscle quality and allometric scaling.

METHODS: Ninety-four community-dwelling older adults (69.1% women) were assessed for 49 body-size variables (anthropometry, body composition and body indexes), handgrip strength (HGS), one maximum repetition measurement for knee extensors (1RM), isokinetic knee extension peak torque at 60°/s (PT), and six-minute walk test (6MWT). Ratio standard or muscle quality (muscle strength/body size) and allometric scaling (muscle strength/body size

RESULTS: Absolute HGS, 1RM and PT cut-off points were not adequate because they were associated with body size (r > 0.30). But it was corrected with muscle strength normalization according to body size-variables: HGS (n = 1); 1RM (n = 24) and PT (n = 24). The best cut-off points, with the highest area under the curve (AUC), were found after normalization for men: HGS/forearm circumference (1.33 kg/cm, AUC = 0.74), 1RM/triceps skinfold (4.22 kg/mm, AUC = 0.81), and PT/body mass*height

CONCLUSIONS: Upper and lower limbs muscle weakness cut-off points standardized according to body size were proposed for older adults of both sexes. Normalization removes the effect of extreme body size on muscle strength (both sexes) and improves the accuracy to identify weakness at population level (for women, but not in men), reducing the risk of false-negative/positive cases.

© 2021. The Author(s).

Keywords: Allometrically scaled; Disability; Evaluation; Frailty; Function/functional status; Measurement; Sarcopenia; Scaling

References

  1. Bohannon RW. Hand-grip dynamometry predicts future outcomes in aging adults. J Geriatr Phys Ther. 2001;2008(31):3–10. https://doi.org/10.1519/00139143-200831010-00002 . - PubMed
  2. Teng Z, Zhu Y, Yu X, Liu J, Long Q, Zeng Y, et al. An analysis and systematic review of sarcopenia increasing osteopenia risk. PLoS ONE. 2021;16: e0250437. https://doi.org/10.1371/journal.pone.0250437 . - PubMed
  3. Bohannon RW. Grip strength: an indispensable biomarker for older adults. Clin Interv Aging. 2019;14:1681–91. https://doi.org/10.2147/cia.s194543 . - PubMed
  4. Santanasto AJ, Miljkovic I, Cvejkus RK, Wheeler VW, Zmuda JM. Sarcopenia characteristics are associated with incident mobility limitations in african caribbean men: the tobago longitudinal study of aging. J Gerontol A Biol Sci Med Sci. 2020;75:1346–52. https://doi.org/10.1093/gerona/glz233 . - PubMed
  5. Landi F, Liperoti R, Russo A, Capoluongo E, Barillaro C, Pahor M, et al. Disability, more than multimorbidity, was predictive of mortality among older persons aged 80 years and older. J Clin Epidemiol. 2010;63:752–9. https://doi.org/10.1016/j.jclinepi.2009.09.007 . - PubMed
  6. Clark BC, Manini TM. Sarcopenia ≠ Dynapenia. J Gerontol Ser A. 2008;63:829–34. https://doi.org/10.1093/gerona/63.8.829 . - PubMed
  7. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146–57. - PubMed
  8. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2018;48:16–31. https://doi.org/10.1093/ageing/afy169 . - PubMed
  9. Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, et al. Grip strength across the life course: normative data from twelve British studies. PLoS ONE. 2014;9: e113637. https://doi.org/10.1371/journal.pone.0113637 . - PubMed
  10. Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95:1851–60. - PubMed
  11. Wang YC, Bohannon RW, Li X, Sindhu B, Kapellusch J. Hand-Grip Strength: Normative Reference Values and Equations for Individuals 18 to 85 Years of Age Residing in the United States. J Orthop Sports Phys Ther. 2018;48:685–93. https://doi.org/10.2519/jospt.2018.7851 . - PubMed
  12. Albrecht BM, Stalling I, Bammann K. Sex- and age-specific normative values for handgrip strength and components of the Senior Fitness Test in community-dwelling older adults aged 65–75 years in Germany: results from the OUTDOOR ACTIVE study. BMC Geriatr. 2021;21:273. https://doi.org/10.1186/s12877-021-02188-9 . - PubMed
  13. Hofmann M, Halper B, Oesen S, Franzke B, Stuparits P, Tschan H, et al. Serum concentrations of insulin-like growth factor-1, members of the TGF-beta superfamily and follistatin do not reflect different stages of dynapenia and sarcopenia in elderly women. Exp Gerontol. 2015;64:35–45. https://doi.org/10.1016/j.exger.2015.02.008 . - PubMed
  14. Lima RM, de Oliveira RJ, Raposo R, Neri SGR, Gadelha AB. Stages of sarcopenia, bone mineral density, and the prevalence of osteoporosis in older women. Arch Osteoporos. 2019;14:38. https://doi.org/10.1007/s11657-019-0591-4 . - PubMed
  15. Akpinar TS, Tayfur M, Tufan F, Sahinkaya T, Kose M, Ozsenel EB, et al. Uncomplicated diabetes does not accelerate age-related sarcopenia. Aging Male Off J Int Soc Study Aging Male. 2014;17:205–10. https://doi.org/10.3109/13685538.2014.963040 . - PubMed
  16. Farinatti P, Paes L, Harris EA, Lopes GO, Borges JP. A simple model to identify risk of sarcopenia and physical disability in HIV-infected patients. J Strength Cond Res. 2017;31:2542–51. https://doi.org/10.1519/jsc.0000000000002070 . - PubMed
  17. Gadelha AB, Vainshelboim B, Ferreira AP, Neri SGR, Bottaro M, Lima RM. Stages of sarcopenia and the incidence of falls in older women: a prospective study. Arch Gerontol Geriatr. 2018;79:151–7. https://doi.org/10.1016/j.archger.2018.07.014 . - PubMed
  18. McGrath R, Hackney KJ, Ratamess NA, Vincent BM, Clark BC, Kraemer WJ. Absolute and body mass index normalized handgrip strength percentiles by gender, ethnicity, and hand dominance in Americans. Adv Geriatr Med Res. 2020. https://doi.org/10.20900/agmr20200005 . - PubMed
  19. Manini TM, Visser M, Won-Park S, Patel KV, Strotmeyer ES, Chen H, et al. Knee extension strength cutpoints for maintaining mobility. J Am Geriatr Soc. 2007;55:451–7. https://doi.org/10.1111/j.1532-5415.2007.01087.x . - PubMed
  20. de Mello RGB, Dalla Corte RR, Gioscia J, Moriguchi EH. Effects of physical exercise programs on sarcopenia management, dynapenia, and physical performance in the elderly: a systematic review of randomized clinical trials. J Aging Res. 2019;2019:1959486. https://doi.org/10.1155/2019/1959486 . - PubMed
  21. Sardeli AV, Komatsu TR, Mori MA, Gáspari AF, Chacon-Mikahil MPT. Resistance training prevents muscle loss induced by caloric restriction in obese elderly individuals: a systematic review and meta-analysis. Nutrients. 2018;10:423. - PubMed
  22. Strasser EM, Hofmann M, Franzke B, Schober-Halper B, Oesen S, Jandrasits W, et al. Strength training increases skeletal muscle quality but not muscle mass in old institutionalized adults: a randomized, multi-arm parallel and controlled intervention study. Eur J Phys Rehabil Med. 2018;54:921–33. https://doi.org/10.23736/s1973-9087.18.04930-4 . - PubMed
  23. Foley KT, Owings TM, Pavol MJ, Grabiner MD. Maximum grip strength is not related to bone mineral density of the proximal femur in older adults. Calcif Tissue Int. 1999;64:291–4. - PubMed
  24. Maranhao Neto GA, Oliveira AJ, Pedreiro RC, Pereira-Junior PP, Machado S, Marques Neto S, et al. Normalizing handgrip strength in older adults: an allometric approach. Arch Gerontol Geriatr. 2017;70:230–4. https://doi.org/10.1016/j.archger.2017.02.007 . - PubMed
  25. Pua Y-H. Allometric analysis of physical performance measures in older adults. Phys Ther. 2006;86:1263–70. - PubMed
  26. Abdalla PP, Carvalho AS, Santos AP, Venturini ACR, Alves TC, Mota J, et al. Cut-off points of knee extension strength allometrically adjusted to identify sarcopenia risk in older adults: a cross-sectional study. Arch Gerontol Geriatr. 2020;89: 104100. https://doi.org/10.1016/j.archger.2020.104100 . - PubMed
  27. Abdalla PP, Venturini ACR, Santos APD, Tasinafo M, Marini JAG, Alves TC, et al. Normalizing calf circumference to identify low skeletal muscle mass in older women: a cross-sectional study. Nutr Hosp. 2021;38:7. https://doi.org/10.20960/nh.03572 . - PubMed
  28. Davies MJ, Dalsky GP. Normalizing strength for body size differences in older adults. Med Sci Sports Exerc. 1997;29:713–7. - PubMed
  29. Bouchard DR, Beliaeff S, Dionne IJ, Brochu M. Fat mass but not fat-free mass is related to physical capacity in well-functioning older individuals: nutrition as a determinant of successful aging (NuAge)—the Quebec Longitudinal Study. J Gerontol Ser A. 2007;62:1382–8. https://doi.org/10.1093/gerona/62.12.1382 . - PubMed
  30. Broadwin J, Goodman-Gruen D, Slymen D. Ability of fat and fat-free mass percentages to predict functional disability in older men and women. J Am Geriatr Soc. 2001;49:1641–5. https://doi.org/10.1111/j.1532-5415.2001.49273.x . - PubMed
  31. Enright PL. The six-minute walk test. Respir Care. 2003;48:783–5. - PubMed
  32. Cuschieri S. The STROBE guidelines. Saudi J Anaesth. 2019;13:S31–4. https://doi.org/10.4103/sja.SJA_543_18 . - PubMed
  33. Bolfarine H, Bussab WO. Elementos de amostragem. São Paulo: Edgard Blücher; 2005. - PubMed
  34. Binder EF, Yarasheski KE, Steger-May K, Sinacore DR, Brown M, Schechtman KB, et al. Effects of progressive resistance training on body composition in frail older adults: results of a randomized, controlled trial. J Gerontol Ser A. 2005;60:1425–31. - PubMed
  35. Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43:748–59. https://doi.org/10.1093/ageing/afu115 . - PubMed
  36. Finney GR, Minagar A, Heilman KM. Assessment of mental status. Neurol Clin. 2016;34:1–16. https://doi.org/10.1016/j.ncl.2015.08.001 . - PubMed
  37. Icaza MC, Albala C. Projeto SABE. Minimental State Examination (MMSE) del estudio de dementia en Chile: análisis estatístico Brasília: OPAS 1999:1–18. - PubMed
  38. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet (Lond, Engl). 2004;363:157–63. https://doi.org/10.1016/s0140-6736(03)15268-3 . - PubMed
  39. Segal NA, Torner JC, Yang M, Curtis JR, Felson DT, Nevitt MC. Muscle mass is more strongly related to hip bone mineral density than is quadriceps strength or lower activity level in adults over age 50 year. J Clin Densitom. 2008;11:503–10. https://doi.org/10.1016/j.jocd.2008.03.001 . - PubMed
  40. Bailey BJ, Briars GL. Estimating the surface area of the human body. Stat Med. 1996;15:1325–32. - PubMed
  41. Jelliffe DB, Jelliffe EP. The arm circumference as a public health index of protein-calorie malnutrition of early childhood. 20. Current conclusions. J Trop Pediatr. 1969;15:253–60. - PubMed
  42. Heymsfield SB, McManus C, Smith J, Stevens V, Nixon DW. Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. Am J Clin Nutr. 1982;36:680–90. - PubMed
  43. George LB, Bruce RB, Baltej SM, Haran TS, Michael FS. Nutritional and metabolic assessment of the hospitalized patient. J Parenter Enter Nutr. 1977;1:11–21. https://doi.org/10.1177/014860717700100101 . - PubMed
  44. Lean M, Han TS, Deurenberg P. Predicting body composition by densitometry from simple anthropometric measurements. Am J Clin Nutr. 1996;63:4–14. - PubMed
  45. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147:755–63. - PubMed
  46. Baumgartner RN, Heymsfield SB, Lichtman S, Wang J, Pierson RN Jr. Body composition in elderly people: effect of criterion estimates on predictive equations. Am J Clin Nutr. 1991;53:1345–53. https://doi.org/10.1093/ajcn/53.6.1345 . - PubMed
  47. Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Hanover: Human Kinetics Books; 1988. - PubMed
  48. Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, et al. Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc. 2011;12:403–9. https://doi.org/10.1016/j.jamda.2011.04.014 . - PubMed
  49. Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL. Hand Grip Strength: age and gender stratified normative data in a population-based study. BMC Res Notes. 2011;4:1–5. - PubMed
  50. Lourenco R, Perez-Zepeda M, Gutierrez-Robledo L, Rodriguez Manas L, Garcia-Garcia F. Performance of the European Working Group on Sarcopenia in Older People algorithm in screening older adults for muscle mass assessment. Age Ageing. 2014;44:334–8. https://doi.org/10.1093/ageing/afu192 . - PubMed
  51. Alexandre S, Duarte YA, Santos JL, Wong R, Lebrao ML. Prevalence and associated factors of sarcopenia among elderly in Brazil: findings from the SABE study. J Nutr Health Aging. 2014;18:284–90. https://doi.org/10.1007/s12603-013-0413-0 . - PubMed
  52. Brzycki M. Strength testing—predicting a one-rep max from reps-to-fatigue. J Phys Educ Recreat Dance. 1993;64:88–90. - PubMed
  53. Abdalla PP, Carvalho AS, Santos AP, Venturini ACR, Alves TC, Mota J, et al. One-repetition submaximal protocol to measure knee extensor muscle strength among older adults with and without sarcopenia: a validation study. BMC Sports Sci Med Rehabil. 2020;12:29. https://doi.org/10.1186/s13102-020-00178-9 . - PubMed
  54. Matsudo S, Araújo T, Matsudo V, Andrade D, Andrade E, Oliveira LC, et al. Questionário internacional De atividade física (ipaq): estupo De validade e reprodutibilidade No Brasil. Revista Brasileira de Atividade Física & Saúde. 2012;6:5–18. - PubMed
  55. Myers R. Classical and modern regression with applications. Boston: PWS and Kent Publishing Company. Inc; 1990. - PubMed
  56. Jaric S. Role of body size in the relation between muscle strength and movement performance. Exerc Sport Sci Rev. 2003;31:8–12. - PubMed
  57. Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24:69–71. - PubMed
  58. Kwak SG, Kim JH. Central limit theorem: the cornerstone of modern statistics. Korean J Anesthesiol. 2017;70:144–56. https://doi.org/10.4097/kjae.2017.70.2.144 . - PubMed
  59. Schisterman EF, Perkins NJ, Liu A, Bondell H. Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology. 2005;16:73–81. - PubMed
  60. Hosmer D, Lemeshow S. Applied logistic regression. 2nd ed. Nova Jersey, EUA: Wiley; 2000. - PubMed
  61. Cawthon PM, Manini T, Patel SM, Newman A, Travison T, Kiel DP, et al. Putative cut-points in sarcopenia components and incident adverse health outcomes: an SDOC analysis. J Am Geriatr Soc. 2020;68:1429–37. https://doi.org/10.1111/jgs.16517 . - PubMed
  62. Alley DE, Shardell MD, Peters KW, McLean RR, Dam T-TL, Kenny AM, et al. Grip strength cutpoints for the identification of clinically relevant weakness. J Gerontol Ser A. 2014;69:559–66. https://doi.org/10.1093/gerona/glu011 . - PubMed
  63. Owings TM, Pavol MJ, Grabiner MD. Lower extremity muscle strength does not independently predict proximal femur bone mineral density in healthy older adults. Bone. 2002;30:515–20. - PubMed
  64. Ramírez-Vélez R, de Asteasu MLS, Martínez-Velilla N, Zambom-Ferraresi F, García-Hermoso A, Izquierdo M. Handgrip strength as a complementary test for mobility limitations assessment in acutely hospitalized oldest old. Rejuvenation Res. 2021. https://doi.org/10.1089/rej.2020.2344 . - PubMed

Publication Types