Display options
Share it on

Pharmaceutics. 2021 Aug 28;13(9). doi: 10.3390/pharmaceutics13091357.

Atrial Natriuretic Peptide Antibody-Functionalised, PEGylated Multiwalled Carbon Nanotubes for Targeted Ischemic Stroke Intervention.

Pharmaceutics

Patrick P Komane, Pradeep Kumar, Yahya E Choonara

Affiliations

  1. Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg 2193, South Africa.
  2. Department of Chemical Sciences, University of Johannesburg, 27 Nind Street, Johannesburg 2028, South Africa.

PMID: 34575433 PMCID: PMC8471373 DOI: 10.3390/pharmaceutics13091357

Abstract

Stroke is one of the major causes of disability and the second major cause of death around the globe. There is a dire need for an ultrasensitive detection tool and an effective and efficient therapeutic system for both detection and treatment of stroke at its infancy stage. Carbon nanotubes are promising nanomaterials for tackling these challenges. The loading of dexamethasone and decoration of PEGylated multiwalled carbon nanotube with atrial natriuretic peptide (ANP) antibody and fluorescein isothiocyanate for targeting ischemic site in the rat stroke model is presented here. Functionalisation of carbon nanotubes with dexamethasone (DEX), polyethylene glycol (PEG), fluorescein isothiocyanate (FITC), and ANP antibody caused a 63-fold increase in the D band intensity as illustrated by Raman. The characteristic band intensity increase was observed at 1636 nm following functionalisation of carbon nanotubes with polyethylene glycol and dexamethasone as confirmed by Fourier Transform Infrared. These findings have demonstrated the coupling capability of atrial natriuretic peptide antibody to DEX-PEG-CNTs. The baseline plasma atrial natriuretic peptide levels were ranging from 118 to 135.70 pg/mL prior to surgery and from 522.09 to 552.37 following common carotid artery occlusion. A decrease in atrial natriuretic peptide levels to 307.77 was observed when the rats were treated with FITC-DEX-PEG-ANP-CNTs, PEG-CNTs and DEX with a significant drop in the FITC-DEX-PEG-ANP-CNTs treated group. Fluorescence was detected in FITC-DEX-PEG-CNTs and FITC-DEX-PEG-ANP-CNTs treated ischemic stroke rats. The highest fluorescence intensity was reported in plasma (2179) followed by the kidney (1563) and liver (1507). These findings suggest a beneficial role that is played by the FITC-DEX-PEG-ANP-CNTs in the reduction of inflammation in the ischemic stroke induced rats that could induce a successful treatment of ischemic stroke.

Keywords: PEGylated carbon nanotubes; atrial natriuretic peptide; brain ischemic stroke; common carotid artery occlusion; dexamethasone; multiwalled carbon nanotubes

References

  1. Expert Opin Drug Deliv. 2015 Apr;12(4):563-81 - PubMed
  2. J Atheroscler Thromb. 2020 Aug 1;27(8):749-750 - PubMed
  3. Research (Wash D C). 2020 Jun 15;2020:2624617 - PubMed
  4. Front Neurol. 2018 Apr 09;9:199 - PubMed
  5. Light Sci Appl. 2020 Sep 15;9:161 - PubMed
  6. Molecules. 2018 Sep 19;23(9): - PubMed
  7. Bioact Mater. 2021 Feb 20;6(9):2854-2869 - PubMed
  8. Int J Stroke. 2020 Oct;15(7):704-721 - PubMed
  9. Stroke. 2005 May;36(5):1016-20 - PubMed
  10. Stroke. 2003 Sep;34(9):2252-7 - PubMed
  11. Nanoscale Res Lett. 2012 Aug 23;7(1):473 - PubMed
  12. Animals (Basel). 2020 May 09;10(5): - PubMed
  13. Int J Pharm. 2016 Mar 30;501(1-2):278-99 - PubMed
  14. Nano Rev. 2013 Dec 03;4: - PubMed
  15. Toxicol Ind Health. 2017 Apr;33(4):340-350 - PubMed
  16. Front Neuroanat. 2019 Jul 18;13:73 - PubMed
  17. Front Immunol. 2020 Mar 04;11:218 - PubMed
  18. Mol Cell Endocrinol. 2018 Sep 5;472:1-9 - PubMed
  19. Int J Pharm. 2017 Feb 25;518(1-2):312-319 - PubMed
  20. J Int Med Res. 2018 Aug;46(8):3017-3029 - PubMed
  21. J Biomater Sci Polym Ed. 2021 Feb;32(2):266-280 - PubMed
  22. Int J Pharm. 2017 May 30;524(1-2):41-54 - PubMed
  23. Chem Soc Rev. 2020 Nov 21;49(22):8065-8087 - PubMed
  24. Int J Mol Sci. 2020 Oct 14;21(20): - PubMed
  25. Biomed Pharmacother. 2020 May;125:109945 - PubMed
  26. Front Pediatr. 2019 Jan 29;6:420 - PubMed
  27. Biotechnol Annu Rev. 2005;11:227-56 - PubMed
  28. Vet Pathol. 2019 Jan;56(1):24-32 - PubMed
  29. Basic Clin Pharmacol Toxicol. 2017 Sep;121 Suppl 3:30-43 - PubMed
  30. BMJ. 2020 Feb 13;368:l6983 - PubMed
  31. Nanomaterials (Basel). 2020 Feb 20;10(2): - PubMed
  32. Part Fibre Toxicol. 2019 Apr 11;16(1):18 - PubMed
  33. Adv Physiol Educ. 2017 Jun 1;41(2):179-185 - PubMed
  34. Int J Mol Med. 2019 Mar;43(3):1193-1202 - PubMed
  35. J Control Release. 2020 Apr 10;320:180-200 - PubMed
  36. J Oral Maxillofac Pathol. 2012 Sep;16(3):400-5 - PubMed
  37. Mol Cell Neurosci. 2013 Mar;53:26-33 - PubMed
  38. Int J Mol Sci. 2020 Mar 25;21(7): - PubMed
  39. Cancer Res. 2008 Aug 15;68(16):6652-60 - PubMed
  40. Molecules. 2018 Jun 10;23(6): - PubMed

Publication Types

Grant support