Display options
Share it on

Plant Cell. 2021 Nov 04;33(11):3402-3420. doi: 10.1093/plcell/koab214.

Immunocapture of dsRNA-bound proteins provides insight into Tobacco rattle virus replication complexes and reveals Arabidopsis DRB2 to be a wide-spectrum antiviral effector.

The Plant cell

Marco Incarbone, Marion Clavel, Baptiste Monsion, Lauriane Kuhn, Hélène Scheer, Émilie Vantard, Vianney Poignavent, Patrice Dunoyer, Pascal Genschik, Christophe Ritzenthaler

Affiliations

  1. Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France.
  2. Plateforme Protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France.

PMID: 34436604 PMCID: PMC8566308 DOI: 10.1093/plcell/koab214

Abstract

Plant RNA viruses form organized membrane-bound replication complexes to replicate their genomes. This process requires virus- and host-encoded proteins and leads to the production of double-stranded RNA (dsRNA) replication intermediates. Here, we describe the use of Arabidopsis thaliana expressing GFP-tagged dsRNA-binding protein (B2:GFP) to pull down dsRNA and associated proteins in planta upon infection with Tobacco rattle virus (TRV). Mass spectrometry analysis of the dsRNA-B2:GFP-bound proteins from infected plants revealed the presence of viral proteins and numerous host proteins. Among a selection of nine host candidate proteins, eight showed relocalization upon infection, and seven of these colocalized with B2-labeled TRV replication complexes. Infection of A. thaliana T-DNA mutant lines for eight such factors revealed that genetic knockout of dsRNA-BINDING PROTEIN 2 (DRB2) leads to increased TRV accumulation and DRB2 overexpression caused a decrease in the accumulation of four different plant RNA viruses, indicating that DRB2 has a potent and wide-ranging antiviral activity. We propose B2:GFP-mediated pull down of dsRNA to be a versatile method to explore virus replication complex proteomes and to discover key host virus replication factors. Given the universality of dsRNA, development of this tool holds great potential to investigate RNA viruses in other host organisms.

© The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists.

References

  1. Virology. 2008 Apr 25;374(1):217-27 - PubMed
  2. Nat Struct Mol Biol. 2005 Nov;12(11):952-7 - PubMed
  3. J Biol Chem. 2017 Aug 25;292(34):14122-14133 - PubMed
  4. Science. 2002 May 17;296(5571):1319-21 - PubMed
  5. Micron. 2015 Mar;70:7-20 - PubMed
  6. Bioinformatics. 2010 Jan 1;26(1):139-40 - PubMed
  7. Virology. 2015 Nov;485:439-51 - PubMed
  8. Virology. 2008 Oct 25;380(2):402-11 - PubMed
  9. Virology. 2012 Oct 25;432(2):296-305 - PubMed
  10. PLoS Pathog. 2016 Oct 27;12(10):e1005912 - PubMed
  11. Sci Rep. 2017 Apr 03;7:45590 - PubMed
  12. Science. 2006 Jul 7;313(5783):68-71 - PubMed
  13. Nat Commun. 2019 Aug 27;10(1):3871 - PubMed
  14. J Virol. 2015 May;89(10):5714-23 - PubMed
  15. Mol Plant Pathol. 2016 Aug;17(6):943-58 - PubMed
  16. Proteomics. 2015 Jul;15(14):2417-25 - PubMed
  17. Chem Soc Rev. 2012 Sep 21;41(18):6178-94 - PubMed
  18. Mol Plant Microbe Interact. 2017 Jun;30(6):435-443 - PubMed
  19. Viruses. 2014 Jul 22;6(7):2826-57 - PubMed
  20. J Cell Sci. 2017 Jan 1;130(1):260-268 - PubMed
  21. Nucleic Acids Res. 2017 Feb 17;45(3):1330-1344 - PubMed
  22. FEBS Lett. 2008 Aug 6;582(18):2753-60 - PubMed
  23. Plant Cell. 2016 Feb;28(2):406-25 - PubMed
  24. Trends Microbiol. 2019 Sep;27(9):792-805 - PubMed
  25. J Plant Res. 2017 Jan;130(1):45-55 - PubMed
  26. J Virol. 2020 May 18;94(11): - PubMed
  27. Plant Physiol. 2012 Sep;160(1):72-82 - PubMed
  28. J Virol. 2006 Mar;80(5):2162-9 - PubMed
  29. RNA. 2017 May;23(5):782-797 - PubMed
  30. Plant Physiol. 1986 Jul;81(3):802-6 - PubMed
  31. Curr Biol. 2006 May 9;16(9):927-32 - PubMed
  32. FASEB J. 2009 Jun;23(6):1845-57 - PubMed
  33. Front Plant Sci. 2012 Dec 06;3:275 - PubMed
  34. Curr Opin Virol. 2012 Dec;2(6):683-90 - PubMed
  35. Plant Physiol. 2006 Jul;141(3):957-65 - PubMed
  36. PLoS Pathog. 2013;9(5):e1003378 - PubMed
  37. Front Plant Sci. 2018 Feb 01;9:70 - PubMed
  38. RNA. 2011 Aug;17(8):1502-10 - PubMed
  39. Sci Rep. 2016 Jul 26;6:30297 - PubMed
  40. Plant Cell. 2016 Oct;28(10):2435-2452 - PubMed
  41. Nat Plants. 2017 Jun 19;3:17094 - PubMed
  42. J Virol. 2017 Jan 18;91(3): - PubMed
  43. Plant Methods. 2006 Nov 06;2:19 - PubMed
  44. Curr Opin Virol. 2011 Nov;1(5):388-95 - PubMed
  45. Crit Rev Biotechnol. 2019 Jun;39(4):508-523 - PubMed
  46. Viruses. 2016 Nov 19;8(11): - PubMed
  47. Nat Rev Microbiol. 2013 Nov;11(11):745-60 - PubMed
  48. Front Plant Sci. 2018 Feb 09;9:135 - PubMed
  49. RNA. 2011 Apr;17(4):750-60 - PubMed
  50. Dev Cell. 2003 Feb;4(2):205-17 - PubMed
  51. Sci Rep. 2018 Mar 14;8(1):4526 - PubMed
  52. PLoS One. 2012;7(4):e35933 - PubMed
  53. Annu Rev Virol. 2016 Sep 29;3(1):491-515 - PubMed
  54. Annu Rev Phytopathol. 2015;53:45-66 - PubMed
  55. Microbiol Mol Biol Rev. 2020 Mar 4;84(2): - PubMed
  56. PLoS One. 2009;4(5):e5553 - PubMed
  57. Plant J. 2002 Sep;31(6):777-86 - PubMed
  58. Plant Biotechnol J. 2009 Sep;7(7):682-93 - PubMed
  59. BMC Plant Biol. 2015 Mar 03;15:70 - PubMed
  60. Trends Plant Sci. 2002 Nov;7(11):487-91 - PubMed
  61. Plant J. 2012 Jan;69(1):14-25 - PubMed
  62. Trends Plant Sci. 2013 Jul;18(7):382-92 - PubMed
  63. J Virol. 2006 Sep;80(17):8459-68 - PubMed
  64. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14732-7 - PubMed
  65. Nat Rev Microbiol. 2011 Dec 19;10(2):137-49 - PubMed

Publication Types