Display options
Share it on

Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2112621118.

Leveraging nonstructural data to predict structures and affinities of protein-ligand complexes.

Proceedings of the National Academy of Sciences of the United States of America

Joseph M Paggi, Julia A Belk, Scott A Hollingsworth, Nicolas Villanueva, Alexander S Powers, Mary J Clark, Augustine G Chemparathy, Jonathan E Tynan, Thomas K Lau, Roger K Sunahara, Ron O Dror

Affiliations

  1. Department of Computer Science, Stanford University, Stanford, CA 94305.
  2. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305.
  3. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.
  4. Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305.
  5. Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA 92093.
  6. Department of Chemistry, Stanford University, Stanford, CA 94305.
  7. Department of Computer Science, Stanford University, Stanford, CA 94305; [email protected].

PMID: 34921117 DOI: 10.1073/pnas.2112621118

Abstract

Over the past five decades, tremendous effort has been devoted to computational methods for predicting properties of ligands-i.e., molecules that bind macromolecular targets. Such methods, which are critical to rational drug design, fall into two categories: physics-based methods, which directly model ligand interactions with the target given the target's three-dimensional (3D) structure, and ligand-based methods, which predict ligand properties given experimental measurements for similar ligands. Here, we present a rigorous statistical framework to combine these two sources of information. We develop a method to predict a ligand's pose-the 3D structure of the ligand bound to its target-that leverages a widely available source of information: a list of other ligands that are known to bind the same target but for which no 3D structure is available. This combination of physics-based and ligand-based modeling improves pose prediction accuracy across all major families of drug targets. Using the same framework, we develop a method for virtual screening of drug candidates, which outperforms standard physics-based and ligand-based virtual screening methods. Our results suggest broad opportunities to improve prediction of various ligand properties by combining diverse sources of information through customized machine-learning approaches.

Copyright © 2021 the Author(s). Published by PNAS.

Keywords: antipsychotics; artificial intelligence; drug design; structural biology; virtual screening

Conflict of interest statement

Competing interest statement: Stanford University has filed a patent application related to this work.

References

  1. Yu W., MacKerell A. D. Jr. Computer-aided drug design methods. Methods Mol. Biol.. 2017;1520:85–106. - PubMed
  2. Sliwoski G., Kothiwale S., Meiler J., Lowe E. W. Jr. Computational methods in drug discovery. Pharmacol. Rev.. 2013;66:334–395. - PubMed
  3. Li J., Fu A., Zhang L.. An overview of scoring functions used for protein-ligand interactions in molecular docking. Interdiscip. Sci.. 2019;11:320–328. - PubMed
  4. Leelananda S. P., Lindert S.. Computational methods in drug discovery. Beilstein J. Org. Chem.. 2016;12:2694–2718. - PubMed
  5. Cherkasov A., et al. QSAR modeling: Where have you been? Where are you going to?. J. Med. Chem.. 2014;57:4977–5010. - PubMed
  6. Sweeney Z. K., et al. Design of annulated pyrazoles as inhibitors of HIV-1 reverse transcriptase. J. Med. Chem.. 2008;51:7449–7458. - PubMed
  7. Hellmann J., et al. Structure-based development of a subtype-selective orexin 1 receptor antagonist. Proc. Natl. Acad. Sci. U.S.A.. 2020;117:18059–18067. - PubMed
  8. Hübner H., et al. Structure-guided development of heterodimer-selective GPCR ligands. Nat. Commun.. 2016;7:1–12. - PubMed
  9. Bissantz C., Kuhn B., Stahl M.. A medicinal chemist’s guide to molecular interactions. J. Med. Chem.. 2010;53:5061–5084. - PubMed
  10. Lyu J., et al. Ultra-large library docking for discovering new chemotypes. Nature. 2019;566:224–229. - PubMed
  11. Cournia Z., et al. Rigorous free energy simulations in virtual screening. J. Chem. Inf. Model.. 2020;60:4153–4169. - PubMed
  12. Hollingsworth S. A., Dror R. O.. Molecular dynamics simulation for all. Neuron. 2018;99:1129–1143. - PubMed
  13. McCorvy J. D., et al. Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs. Nat. Chem. Biol.. 2018;14:126–134. - PubMed
  14. Lalut J., et al. Rational design of novel benzisoxazole derivatives with acetylcholinesterase inhibitory and serotoninergic 5-HT4 receptors activities for the treatment of Alzheimer’s disease. Sci. Rep.. 2020;10:1–11. - PubMed
  15. Ferreira L. G., Dos Santos R. N., Oliva G., Andricopulo A. D.. Molecular docking and structure-based drug design strategies. Molecules. 2015;20:13384–13421. - PubMed
  16. Platzer K. E. B., Momany F. A., Scheraga H. A.. Conformational energy calculations of enzyme-substrate interactions. II. Computation of the binding energy for substrates in the active site of -chymotrypsin. Int. J. Pept. Protein Res.. 1972;4:201–219. - PubMed
  17. Kuntz I. D., Blaney J. M., Oatley S. J., Langridge R., Ferrin T. E.. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol.. 1982;161:269–288. - PubMed
  18. Jain A. N.. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem.. 2003;46:499–511. - PubMed
  19. Friesner R. A., et al. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem.. 2006;49:6177–6196. - PubMed
  20. Friesner R. A., et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem.. 2004;47:1739–1749. - PubMed
  21. Trott O., Olson A. J.. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem.. 2010;31:455–461. - PubMed
  22. Jones G., Willett P., Glen R. C., Leach A. R., Taylor R.. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol.. 1997;267:727–748. - PubMed
  23. Rarey M., Kramer B., Lengauer T., Klebe G.. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol.. 1996;261:470–489. - PubMed
  24. Allen W. J., et al. DOCK 6: Impact of new features and current docking performance. J. Comput. Chem.. 2015;36:1132–1156. - PubMed
  25. Venkatachalam C. M., Jiang X., Oldfield T., Waldman M.. LigandFit: A novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model.. 2003;21:289–307. - PubMed
  26. Gaulton A., et al. The ChEMBL database in 2017. Nucleic Acids Res.. 2017;45:D945–D954. - PubMed
  27. Mysinger M. M., Carchia M., Irwin J. J., Shoichet B. K.. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem.. 2012;55:6582–6594. - PubMed
  28. Wang Z., et al. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys.. 2016;18:12964–12975. - PubMed
  29. Pagadala N. S., Syed K., Tuszynski J.. Software for molecular docking: A review. Biophys. Rev.. 2017;9:91–102. - PubMed
  30. Santos R., et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov.. 2017;16:19–34. - PubMed
  31. Bajusz D., Rácz A., Héberger K.. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?. J. Cheminform.. 2015;7:1–13. - PubMed
  32. Stein R. M., et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature. 2020;579:609–614. - PubMed
  33. Butini S, et al. Polypharmacology of dopamine receptor ligands. Prog. Neurobiol.. 2016;142:68–103. - PubMed
  34. Moritz A. E, Free R. B, Sibley D. R. Advances and challenges in the search for D2 and D3 dopamine receptor-selective compounds. Cell. Signal.. 2018;41:75–81. - PubMed
  35. Wang S., et al. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature. 2018;555:269–273. - PubMed
  36. Yin J, et al. Structure of a D2 dopamine receptor-G-protein complex in a lipid membrane. Nature. 2020;584:125–129. - PubMed
  37. Fan L, et al. Haloperidol bound D2 dopamine receptor structure inspired the discovery of subtype selective ligands. Nat. Commun.. 2020;11:1074. - PubMed
  38. Hauser A. S., et al. Pharmacogenomics of GPCR drug targets. Cell. 2018;172:41–54.e19. - PubMed
  39. Kramer C., Kalliokoski T., Gedeck P., Vulpetti A.. The experimental uncertainty of heterogeneous public K(i) data. J. Med. Chem.. 2012;55:5165–5173. - PubMed
  40. Papadatos G., Gaulton A., Hersey A., Overington J. P.. Activity, assay and target data curation and quality in the ChEMBL database. J. Comput. Aided Mol. Des.. 2015;29:885–896. - PubMed
  41. Verma J., Khedkar V. M., Coutinho E. C.. 3D-QSAR in drug design--A review. Curr. Top. Med. Chem.. 2010;10:95–115. - PubMed
  42. Cramer R. D., Patterson D. E., Bunce J. D.. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc.. 1988;110:5959–5967. - PubMed
  43. Sastry G. M., Dixon S. L., Sherman W.. Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring. J. Chem. Inf. Model.. 2011;51:2455–2466. - PubMed
  44. Alam S., Khan F.. 3D-QSAR, Docking, ADME/Tox studies on Flavone analogs reveal anticancer activity through Tankyrase inhibition. Sci. Rep.. 2019;9:1–15. - PubMed
  45. Cleves A. E., Jain A. N.. Structure- and ligand-based virtual screening on DUD-E+: Performance dependence on approximations to the binding pocket. J. Chem. Inf. Model.. 2020;60:4296–4310. - PubMed
  46. Sastry G. M., Inakollu V. S., Sherman W.. Boosting virtual screening enrichments with data fusion: Coalescing hits from two-dimensional fingerprints, shape, and docking. J. Chem. Inf. Model.. 2013;53:1531–1542. - PubMed
  47. Vass M., et al. Molecular interaction fingerprint approaches for GPCR drug discovery. Curr. Opin. Pharmacol.. 2016;30:59–68. - PubMed
  48. Jiang L., Rizzo R. C.. Pharmacophore-based similarity scoring for DOCK. J. Phys. Chem. B. 2015;119:1083–1102. - PubMed
  49. Fu D. Y., Meiler J.. RosettaLigandEnsemble: A small-molecule ensemble-driven docking approach. ACS Omega. 2018;3:3655–3664. - PubMed
  50. Vieth M., Cummins D. J.. DoMCoSAR: A novel approach for establishing the docking mode that is consistent with the structure-activity relationship. Application to HIV-1 protease inhibitors and VEGF receptor tyrosine kinase inhibitors. J. Med. Chem.. 2000;43:3020–3032. - PubMed
  51. Wallach I., Lilien R.. Predicting multiple ligand binding modes using self-consistent pharmacophore hypotheses. J. Chem. Inf. Model.. 2009;49:2116–2128. - PubMed
  52. Renner S., Derksen S., Radestock S., Mörchen F.. Maximum common binding modes (MCBM): Consensus docking scoring using multiple ligand information and interaction fingerprints. J. Chem. Inf. Model.. 2008;48:319–332. - PubMed
  53. Malhotra S., Karanicolas J.. When does chemical elaboration induce a ligand to change its binding mode?. J. Med. Chem.. 2017;60:128–145. - PubMed
  54. Fleming N.. How artificial intelligence is changing drug discovery. Nature. 2018;557:S55–S55. - PubMed
  55. Eismann S., et al. Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes. Proteins. 2021;89:493–501. - PubMed
  56. Ragoza M., Hochuli J., Idrobo E., Sunseri J., Koes D. R.. Protein- ligand scoring with convolutional neural networks. J. Chem. Inf. Model.. 2017;57:942–957. - PubMed
  57. Feinberg E. N., et al. PotentialNet for molecular property prediction. ACS Cent. Sci.. 2018;4:1520–1530. - PubMed
  58. Altae-Tran H., Ramsundar B., Pappu A. S., Pande V.. Low data drug discovery with one-shot learning. ACS Cent. Sci.. 2017;3:283–293. - PubMed
  59. Ramsundar B., et al. Is multitask deep learning practical for pharma?. J. Chem. Inf. Model.. 2017;57:2068–2076. - PubMed
  60. Yang K., et al. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model.. 2019;59:3370–3388. - PubMed
  61. Hauser A. S., Attwood M. M., Rask-Andersen M., Schiöth H. B., Gloriam D. E.. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov.. 2017;16:829–842. - PubMed
  62. Lim J., et al. Predicting drug-target interaction using a novel graph neural network with 3D structure-embedded graph representation. J. Chem. Inf. Model.. 2019;59:3981–3988. - PubMed
  63. Chupakhin V., Marcou G., Baskin I., Varnek A., Rognan D.. Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints. J. Chem. Inf. Model.. 2013;53:763–772. - PubMed
  64. Sherman W., Day T., Jacobson M. P., Friesner R. A., Farid R.. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem.. 2006;49:534–553. - PubMed
  65. Ravindranath P. A., Forli S., Goodsell D. S., Olson A. J., Sanner M. F.. AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility. PLOS Comput. Biol.. 2015;11:e1004586. - PubMed
  66. Da C., Kireev D.. Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: Method and benchmark study. J. Chem. Inf. Model.. 2014;54:2555–2561. - PubMed
  67. Gainza P., et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods. 2020;17:184–192. - PubMed
  68. Cleves A. E., Jain A. N.. Quantitative surface field analysis: Learning causal models to predict ligand binding affinity and pose. J. Comput. Aided Mol. Des.. 2018;32:731–757. - PubMed

Publication Types