Display options
Share it on

Metallomics. 2021 Oct 20;13(10). doi: 10.1093/mtomcs/mfab055.

Zinc trafficking 1. Probing the roles of proteome, metallothionein, and glutathione.

Metallomics : integrated biometal science

Afsana Mahim, Mohammad Karim, David H Petering

Affiliations

  1. Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
  2. Department of Cell and Gene Therapy, PPD, Middleton, WI, USA.

PMID: 34472617 PMCID: PMC8527460 DOI: 10.1093/mtomcs/mfab055

Abstract

The cellular trafficking pathways that conduct zinc to its sites of binding in functional proteins remain largely unspecified. In this study, the hypothesis was investigated that nonspecific proteomic binding sites serve as intermediates in zinc trafficking. Proteome from pig kidney LLC-PK1 cells contains a large concentration of such sites, displaying an average conditional stability constant of 1010-11, that are dependent on sulfhydryl ligands to achieve high-affinity binding of zinc. As a result, the proteome competes effectively with induced metallothionein for Zn2+ upon exposure of cells to extracellular Zn2+ or during in vitro direct competition. The reaction of added Zn2+ bound to proteome with apo-carbonic anhydrase was examined as a potential model for intracellular zinc trafficking. The extent of this reaction was inversely dependent upon proteome concentration and under cellular conditions thought to be negligible. The rate of reaction was strictly first order in both Zn2+ and apo-carbonic anhydrase, and also considered to be insignificant in cells. Adding the low molecular weight fraction of cell supernatant to the proteome markedly enhanced the speed of this reaction, a phenomenon dependent on the presence of glutathione (GSH). In agreement, inclusion of GSH accelerated the reaction in a concentration-dependent manner. The implications of abundant high-affinity binding sites for Zn2+ within the proteome are considered in relation to their interaction with GSH in the efficient delivery of Zn2+ to functional binding sites and in the operation of fluorescent zinc sensors as a tool to observe zinc trafficking.

© The Author(s) 2021. Published by Oxford University Press.

Keywords: free zinc; glutathione; metallothionein; proteome; zinc fluorescent sensors; zinc trafficking

References

  1. J Nutr. 1999 Sep;129(9):1643-8 - PubMed
  2. Int J Mol Sci. 2017 Jun 17;18(6): - PubMed
  3. J Inorg Biochem. 2008 Mar;102(3):489-99 - PubMed
  4. J Membr Biol. 1991 Jul;123(1):63-71 - PubMed
  5. Biochemistry. 2004 May 11;43(18):5437-44 - PubMed
  6. ACS Chem Biol. 2006 Mar 17;1(2):103-11 - PubMed
  7. Metallomics. 2017 Apr 19;9(4):391-401 - PubMed
  8. Anal Biochem. 1977 May 1;79(1-2):614-7 - PubMed
  9. Anal Biochem. 1979 Feb;93(1):98-102 - PubMed
  10. Exp Biol Med (Maywood). 2006 Oct;231(9):1528-34 - PubMed
  11. Chem Commun (Camb). 2003 Mar 21;(6):704-5 - PubMed
  12. Free Radic Biol Med. 2009 Sep 15;47(6):675-83 - PubMed
  13. J Proteome Res. 2006 Jan;5(1):196-201 - PubMed
  14. J Inorg Biochem. 1994 May 1;54(2):91-105 - PubMed
  15. EMBO J. 1995 Feb 15;14(4):639-49 - PubMed
  16. Metallomics. 2016 Feb;8(2):201-10 - PubMed
  17. Methods Mol Biol. 2011;740:7-12 - PubMed
  18. Biochim Biophys Acta. 2006 Jul;1763(7):711-22 - PubMed
  19. Inorg Chem. 2018 Aug 20;57(16):9826-9838 - PubMed
  20. Chem Rev. 2009 Oct;109(10):4760-79 - PubMed
  21. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8088-92 - PubMed
  22. Acc Chem Res. 2009 Oct 20;42(10):1471-9 - PubMed
  23. Chem Rev. 2009 Oct;109(10):4682-707 - PubMed
  24. Nat Prod Rep. 2010 May;27(5):695-710 - PubMed
  25. Biochem Cell Biol. 2019 Jun;97(3):270-289 - PubMed
  26. J Bioenerg Biomembr. 2002 Oct;34(5):373-9 - PubMed
  27. Biochim Biophys Acta. 2012 Sep;1823(9):1416-25 - PubMed
  28. J Inorg Biochem. 2016 Aug;161:107-14 - PubMed
  29. Chem Res Toxicol. 2010 Feb 15;23(2):422-31 - PubMed
  30. Metallomics. 2015 Feb;7(2):244-57 - PubMed
  31. Acta Crystallogr D Biol Crystallogr. 2004 Apr;60(Pt 4):792-5 - PubMed
  32. J Biol Chem. 2006 Aug 25;281(34):24085-9 - PubMed
  33. Cancer Res. 1988 Jun 15;48(12):3381-8 - PubMed
  34. Chem Biol Interact. 1998 Apr 24;111-112:1-14 - PubMed
  35. Am J Physiol Cell Physiol. 2008 Mar;294(3):C726-42 - PubMed
  36. Methods Enzymol. 1988;158:21-32 - PubMed
  37. Biochemistry. 2014 Oct 7;53(39):6276-85 - PubMed
  38. Int J Mol Sci. 2016 Mar 04;17(3):336 - PubMed
  39. Biochem J. 1988 Oct 15;255(2):483-91 - PubMed
  40. Inorg Chem. 2011 Aug 15;50(16):7563-73 - PubMed
  41. J Mol Biol. 1992 Oct 20;227(4):1192-204 - PubMed
  42. Biochemistry. 1985 Nov 19;24(24):6744-51 - PubMed
  43. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6334-8 - PubMed
  44. J Biol Inorg Chem. 2006 Nov;11(8):1049-62 - PubMed
  45. J Inorg Biochem. 2010 Mar;104(3):224-31 - PubMed
  46. Chem Rev. 2014 Apr 23;114(8):4564-601 - PubMed
  47. Metallomics. 2010 May;2(5):306-17 - PubMed
  48. Metallomics. 2011 Jul;3(7):662-74 - PubMed
  49. J Biol Inorg Chem. 2003 Nov;8(8):803-9 - PubMed
  50. Biochemistry. 1993 Sep 28;32(38):9896-900 - PubMed
  51. Metallomics. 2016 Sep 1;8(9):840-52 - PubMed
  52. Mol Aspects Med. 2013 Apr-Jun;34(2-3):548-60 - PubMed

Publication Types

Grant support