Display options
Share it on

J Extracell Vesicles. 2019 Nov 20;9(1):1692401. doi: 10.1080/20013078.2019.1692401. eCollection 2020.

Purity and yield of melanoma exosomes are dependent on isolation method.

Journal of extracellular vesicles

Shin La Shu, Yunchen Yang, Cheryl L Allen, Edward Hurley, Kaity H Tung, Hans Minderman, Yun Wu, Marc S Ernstoff

Affiliations

  1. Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
  2. Department of Biomedical Engineering, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.
  3. Hunter James Kelly Research Institute, NYS Center Of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, USA.
  4. Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.
  5. Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.

PMID: 31807236 PMCID: PMC6882439 DOI: 10.1080/20013078.2019.1692401

Abstract

Both exosomes and soluble factors have been implicated in the generation of an immunosuppressive tumour microenvironment. Determining the contribution of each requires stringent control of purity of the isolated analytes. The present study compares several conventional exosome isolation methods for the presence of co-enriched soluble factors while isolating exosomes from human melanoma-derived cell lines. The resultant preparations were analysed by multiplex bead array analysis for cytokine profiles, and by electron microscopy and nanotracking analysis for exosome size distribution and concentration. It is demonstrated that the amount and repertoire of soluble factors in exosome preparations is dependent upon the isolation method used. A combination of ultrafiltration and size exclusion chromatography yielded up to 58-fold more exosomes than ultracentrifugation, up to 836-fold lower concentrations of co-purified soluble factors when adjusted for exosome yield, and a greater than two-fold increase in PD-L1 expressing exosomes. Mechanistically, in context of the immunomodulatory effects of exosomes, the exosome isolation method should be carefully considered in order to limit any effects due instead to co-eluted soluble factors.

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles.

Keywords: EV; ExoQuickULTRA; Exosomes; PD-L1; REIUS; SEC; ultracentrifugation

References

  1. Am J Physiol Renal Physiol. 2007 May;292(5):F1657-61 - PubMed
  2. PLoS One. 2018 Sep 27;13(9):e0204276 - PubMed
  3. Nature. 2018 Aug;560(7718):382-386 - PubMed
  4. Pathobiology. 1999;67(1):12-8 - PubMed
  5. Anal Bioanal Chem. 2018 Jun;410(16):3805-3814 - PubMed
  6. Am J Pathol. 1997 Oct;151(4):1105-13 - PubMed
  7. Proteomics. 2019 Apr;19(8):e1800156 - PubMed
  8. Ann Transl Med. 2017 Mar;5(5):117 - PubMed
  9. Arthritis Res Ther. 2017 Jan 25;19(1):14 - PubMed
  10. Sci Rep. 2018 Mar 2;8(1):3945 - PubMed
  11. Ann Transl Med. 2017 Feb;5(3):54 - PubMed
  12. Sci Rep. 2017 Nov 10;7(1):15297 - PubMed
  13. Pigment Cell Melanoma Res. 2017 Mar;30(2):203-218 - PubMed
  14. Clin Cancer Res. 2005 Feb 1;11(3):1010-20 - PubMed
  15. Nanomedicine. 2017 Aug;13(6):2061-2065 - PubMed
  16. Methods. 2012 Feb;56(2):293-304 - PubMed
  17. Nanoscale. 2018 Jan 18;10(3):881-906 - PubMed
  18. Acta Chir Belg. 2017 Feb;117(1):29-35 - PubMed
  19. Sci Rep. 2016 Apr 12;6:23978 - PubMed
  20. Adv Pharm Bull. 2016 Sep;6(3):293-299 - PubMed
  21. Proteomics. 2009 Nov;9(21):4997-5000 - PubMed
  22. Cancer Genomics Proteomics. 2017 01-02;14(1):1-15 - PubMed
  23. J Chromatogr A. 2014 Dec 5;1371:125-35 - PubMed
  24. Front Cell Dev Biol. 2018 Feb 20;6:18 - PubMed
  25. Recent Results Cancer Res. 1995;139:155-68 - PubMed
  26. J Extracell Vesicles. 2014 Sep 08;3: - PubMed
  27. Int J Biol Sci. 2011;7(5):651-8 - PubMed
  28. Methods. 2015 Oct 1;87:3-10 - PubMed
  29. Methods Mol Biol. 2017;1660:91-103 - PubMed
  30. Mod Pathol. 2011 Jun;24(6):801-9 - PubMed
  31. J Extracell Vesicles. 2013 Jan 10;2: - PubMed
  32. J Transl Med. 2018 Jan 9;16(1):1 - PubMed
  33. Adv Exp Med Biol. 2017;1036:81-89 - PubMed
  34. J Exp Med. 2006 Jul 10;203(7):1651-6 - PubMed
  35. Cancer Res. 1994 Sep 1;54(17):4785-90 - PubMed
  36. J Infect Dis. 2015 Jun 1;211(11):1712-6 - PubMed
  37. Sci Rep. 2018 Jun 12;8(1):8973 - PubMed
  38. Sci Rep. 2018 Aug 27;8(1):12905 - PubMed
  39. Blood. 2014 Jan 30;123(5):687-96 - PubMed
  40. Oncotarget. 2016 Dec 27;7(52):86999-87015 - PubMed
  41. Mol Cancer Res. 2018 Jul;16(7):1196-1204 - PubMed
  42. Methods Mol Biol. 2015;1295:179-209 - PubMed
  43. J Immunol. 2009 Sep 15;183(6):3720-30 - PubMed
  44. J Immunol Methods. 2014 Sep;411:55-65 - PubMed
  45. Clin Biochem. 2014 Jan;47(1-2):135-8 - PubMed
  46. ACS Sens. 2018 Aug 24;3(8):1471-1479 - PubMed
  47. J Extracell Vesicles. 2018 Nov 23;7(1):1535750 - PubMed
  48. Sci Rep. 2015 Mar 09;5:8913 - PubMed
  49. Mol Cell Proteomics. 2010 Feb;9(2):197-208 - PubMed
  50. Sci Rep. 2017 Sep 14;7(1):11561 - PubMed
  51. Mol Med Rep. 2013 Oct;8(4):1272-8 - PubMed
  52. Clin Cancer Res. 2008 Nov 1;14(21):6735-41 - PubMed
  53. Theranostics. 2017 Jan 26;7(3):789-804 - PubMed
  54. J Extracell Vesicles. 2016 Jun 20;5:31655 - PubMed
  55. J Mol Biol. 2016 Feb 22;428(4):688-692 - PubMed
  56. Nat Rev Cancer. 2009 Apr;9(4):285-93 - PubMed
  57. Nanomedicine. 2015 May;11(4):879-83 - PubMed
  58. Nat Rev Cancer. 2017 May;17(5):302-317 - PubMed
  59. J Extracell Vesicles. 2016 Oct 31;5:32945 - PubMed
  60. Sci Rep. 2016 Sep 23;6:33935 - PubMed
  61. Clin Cancer Res. 2017 Aug 15;23(16):4938-4944 - PubMed

Publication Types

Grant support