Display options
Share it on

J Biomed Opt. 2021 Dec;27(7). doi: 10.1117/1.JBO.27.7.074708.

Spectral characterization of liquid hemoglobin phantoms with varying oxygenation states.

Journal of biomedical optics

Motasam Majedy, Rolf B Saager, Tomas Strömberg, Marcus Larsson, E Göran Salerud

Affiliations

  1. Linköping University, Department of Biomedical Engineering, Linköping, Sweden.

PMID: 34850613 PMCID: PMC8632618 DOI: 10.1117/1.JBO.27.7.074708

Abstract

SIGNIFICANCE: For optical methods to accurately assess hemoglobin oxygen saturation in vivo, an independently verifiable tissue-like standard is required for validation. For this purpose, we propose three hemoglobin preparations and evaluate methods to characterize them.

AIM: To spectrally characterize three different hemoglobin preparations using multiple spectroscopic methods and to compare their absorption spectra to commonly used reference spectra.

APPROACH: Absorption spectra of three hemoglobin preparations in solution were characterized using spectroscopic collimated transmission: whole blood, lysed blood, and ferrous-stabilized hemoglobin. Tissue-mimicking phantoms composed of Intralipid, and the hemoglobin solutions were characterized using spatial frequency-domain spectroscopy (SFDS) and enhanced perfusion and oxygen saturation (EPOS) techniques while using yeast to deplete oxygen.

RESULTS: All hemoglobin preparations exhibited similar absorption spectra when accounting for methemoglobin and scattering in their oxyhemoglobin and deoxyhemoglobin forms, respectively. However, systematic differences were observed in the fitting depending on the reference spectra used. For the tissue-mimicking phantoms, SFDS measurements at the surface of the phantom were affected by oxygen diffusion at the interface with air, associated with higher values than for the EPOS system.

CONCLUSIONS: We show the validity of different blood phantoms and what considerations need to be addressed in each case to utilize them equivalently.

Keywords: hemoglobin; oxygen saturation; tissue simulating phantom

References

  1. J Biomed Opt. 2018 Mar;23(3):1-12 - PubMed
  2. J Biomed Opt. 2010 Jan-Feb;15(1):017012 - PubMed
  3. Biomed Opt Express. 2016 Jul 11;7(8):2973-92 - PubMed
  4. ACS Biomater Sci Eng. 2018 Sep 10;4(9):3177-3184 - PubMed
  5. Phys Med Biol. 2007 Oct 21;52(20):6295-322 - PubMed
  6. Appl Opt. 2006 Feb 10;45(5):1072-8 - PubMed
  7. J Biomed Opt. 2017 Nov;22(11):1-9 - PubMed
  8. Phys Med Biol. 1998 Nov;43(11):3381-404 - PubMed
  9. J Biomed Opt. 2009 Mar-Apr;14(2):024012 - PubMed
  10. Am J Physiol Heart Circ Physiol. 2020 Apr 1;318(4):H908-H915 - PubMed
  11. Phys Med Biol. 2011 Jul 7;56(13):4013-21 - PubMed
  12. Adv Exp Med Biol. 2018;1072:381-385 - PubMed
  13. Opt Lett. 2009 May 15;34(10):1525-7 - PubMed
  14. Lasers Med Sci. 2014 Mar;29(2):453-79 - PubMed
  15. Biophys J. 2013 Jan 8;104(1):258-67 - PubMed
  16. Phys Med Biol. 2013 Jun 7;58(11):R37-61 - PubMed
  17. Sci Rep. 2017 Nov 10;7(1):15259 - PubMed
  18. J Biomed Opt. 2013 Dec;18(12):127004 - PubMed
  19. J Biophotonics. 2011 Apr;4(4):268-76 - PubMed
  20. Proc K Ned Akad Wet C. 1970;73(1):104-12 - PubMed
  21. Microvasc Res. 2015 Nov;102:70-7 - PubMed
  22. Clin Physiol Funct Imaging. 2011 Nov;31(6):445-51 - PubMed
  23. Opt Lett. 2015 Sep 15;40(18):4321-4 - PubMed
  24. J Biomed Opt. 2008 Sep-Oct;13(5):054044 - PubMed
  25. J Biomed Opt. 2020 Nov;25(11): - PubMed
  26. IEEE Trans Biomed Eng. 1979 Dec;26(12):656-64 - PubMed
  27. Biomed Opt Express. 2017 Dec 05;9(1):86-101 - PubMed

Publication Types