Display options
Share it on

J Pathol. 2022 Jan;256(1):61-70. doi: 10.1002/path.5808. Epub 2021 Oct 25.

Mucosal melanomas of different anatomic sites share a common global DNA methylation profile with cutaneous melanoma but show location-dependent patterns of genetic and epigenetic alterations.

The Journal of pathology

Philipp Jurmeister, Niklas Wrede, Inga Hoffmann, Claudia Vollbrecht, Daniel Heim, Michael Hummel, Peggy Wolkenstein, Ines Koch, Verena Heynol, Wolfgang Daniel Schmitt, Anne Thieme, Daniel Teichmann, Christine Sers, Andreas von Deimling, Julia Cara Thierauf, Maximilian von Laffert, Frederick Klauschen, David Capper

Affiliations

  1. Institute of Pathology, Ludwig Maximilians University Hospital Munich, Munich, Germany.
  2. Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
  3. German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
  4. Berlin Institute of Health (BIH), Berlin, Germany.
  5. Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany.
  6. Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
  7. Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.

PMID: 34564861 DOI: 10.1002/path.5808

Abstract

Cutaneous, ocular, and mucosal melanomas are histologically indistinguishable tumors that are driven by a different spectrum of genetic alterations. With current methods, identification of the site of origin of a melanoma metastasis is challenging. DNA methylation profiling has shown promise for the identification of the site of tumor origin in various settings. Here we explore the DNA methylation landscape of melanomas from different sites and analyze if different melanoma origins can be distinguished by their epigenetic profile. We performed DNA methylation analysis, next generation DNA panel sequencing, and copy number analysis of 82 non-cutaneous and 25 cutaneous melanoma samples. We further analyzed eight normal melanocyte cell culture preparations. DNA methylation analysis separated uveal melanomas from melanomas of other primary sites. Mucosal, conjunctival, and cutaneous melanomas shared a common global DNA methylation profile. Still, we observed location-dependent DNA methylation differences in cancer-related genes, such as low frequencies of RARB (7/63) and CDKN2A promoter methylation (6/63) in mucosal melanomas, or a high frequency of APC promoter methylation in conjunctival melanomas (6/9). Furthermore, all investigated melanomas of the paranasal sinus showed loss of PTEN expression (9/9), mainly caused by promoter methylation. This was less frequently seen in melanomas of other sites (24/98). Copy number analysis revealed recurrent amplifications in mucosal melanomas, including chromosomes 4q, 5p, 11q and 12q. Most melanomas of the oral cavity showed gains of chromosome 5p with TERT amplification (8/10), while 11q amplifications were enriched in melanomas of the nasal cavity (7/16). In summary, mucosal, conjunctival, and cutaneous melanomas show a surprisingly similar global DNA methylation profile and identification of the site of origin by DNA methylation testing is likely not feasible. Still, our study demonstrates tumor location-dependent differences of promoter methylation frequencies in specific cancer-related genes together with tumor site-specific enrichment for specific chromosomal changes and genetic mutations. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.

© 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.

Keywords: DNA methylation; DNA sequencing; conjunctival melanoma; copy number profiling; cutaneous melanoma; mucosal melanoma; uveal melanoma

References

  1. Mihajlovic M, Vlajkovic S, Jovanovic P, et al. Primary mucosal melanomas: a comprehensive review. Int J Clin Exp Pathol 2012; 5: 739-753. - PubMed
  2. Patrick RJ, Fenske NA, Messina JL. Primary mucosal melanoma. J Am Acad Dermatol 2007; 56: 828-834. - PubMed
  3. Rivolta C, Royer-Bertrand B, Rimoldi D, et al. UV light signature in conjunctival melanoma; not only skin should be protected from solar radiation. J Hum Genet 2016; 61: 361-362. - PubMed
  4. Krantz BA, Dave N, Komatsubara KM, et al. Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clin Ophthalmol 2017; 11: 279-289. - PubMed
  5. Pane AR, Hirst LW. Ultraviolet light exposure as a risk factor for ocular melanoma in Queensland, Australia. Ophthalmic Epidemiol 2000; 7: 159-167. - PubMed
  6. Lutz JM, Cree I, Sabroe S, et al. Occupational risks for uveal melanoma results from a case-control study in nine European countries. Cancer Causes Control 2005; 16: 437-447. - PubMed
  7. Logan P, Bernabeu M, Ferreira A, et al. Evidence for the role of blue light in the development of uveal melanoma. J Ophthalmol 2015; 2015: 386986. - PubMed
  8. Tyrrell H, Payne M. Combatting mucosal melanoma: recent advances and future perspectives. Melanoma Manag 2018; 5: MMT11. - PubMed
  9. Chang AE, Karnell LH, Menck HR. The National Cancer Data Base report on cutaneous and noncutaneous melanoma: a summary of 84,836 cases from the past decade. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer 1998; 83: 1664-1678. - PubMed
  10. Newell F, Kong Y, Wilmott JS, et al. Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nat Commun 2019; 10: 3163. - PubMed
  11. Johnson DB, Carlson JA, Elvin JA, et al. Landscape of genomic alterations (GA) and tumor mutational burden (TMB) in different metastatic melanoma (MM) subtypes. J Clin Oncol 2017; 35: 9536. - PubMed
  12. Griewank KG, Westekemper H, Murali R, et al. Conjunctival melanomas harbor BRAF and NRAS mutations and copy number changes similar to cutaneous and mucosal melanomas. Clin Cancer Res 2013; 19: 3143-3152. - PubMed
  13. Shoushtari AN, Carvajal RD. GNAQ and GNA11 mutations in uveal melanoma. Melanoma Res 2014; 24: 525-534. - PubMed
  14. Hintzsche JD, Gorden NT, Amato CM, et al. Whole-exome sequencing identifies recurrent SF3B1 R625 mutation and comutation of NF1 and KIT in mucosal melanoma. Melanoma Res 2017; 27: 189-199. - PubMed
  15. Nassar KW, Tan AC. The mutational landscape of mucosal melanoma. Semin Cancer Biol 2020; 61: 139-148. - PubMed
  16. Lyu J, Song Z, Chen J, et al. Whole-exome sequencing of oral mucosal melanoma reveals mutational profile and therapeutic targets. J Pathol 2018; 244: 358-366. - PubMed
  17. Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature 2017; 545: 175-180. - PubMed
  18. Wong K, van der Weyden L, Schott CR, et al. Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma. Nat Commun 2019; 10: 353. - PubMed
  19. Capper D, Jones DTW, Sill M, et al. DNA methylation-based classification of central nervous system tumours. Nature 2018; 555: 469-474. - PubMed
  20. Koelsche C, Hartmann W, Schrimpf D, et al. Array-based DNA-methylation profiling in sarcomas with small blue round cell histology provides valuable diagnostic information. Mod Pathol 2018; 31: 1246-1256. - PubMed
  21. Koelsche C, Schrimpf D, Stichel D, et al. Sarcoma classification by DNA methylation profiling. Nat Commun 2021; 12: 498. - PubMed
  22. Jurmeister P, Bockmayr M, Seegerer P, et al. Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases. Sci Transl Med 2019; 11: eaaw8513. - PubMed
  23. Jurmeister P, Schöler A, Arnold A, et al. DNA methylation profiling reliably distinguishes pulmonary enteric adenocarcinoma from metastatic colorectal cancer. Mod Pathol 2019; 32: 855-865. - PubMed
  24. Griewank K, Koelsche C, van de Nes JAP, et al. Integrated genomic classification of melanocytic tumors of the central nervous system using mutation analysis, copy number alterations, and DNA methylation profiling. Clin Cancer Res 2018; 24: 4494-4504. - PubMed
  25. Ng JM, Yu J. Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int J Mol Sci 2015; 16: 2472-2496. - PubMed
  26. Roh MR, Gupta S, Park KH, et al. Promoter methylation of PTEN is a significant prognostic factor in melanoma survival. J Invest Dermatol 2016; 136: 1002-1011. - PubMed
  27. Wang W, Shao F, Yang X, et al. METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N6-methyladenosine-dependent YTHDF binding. Nat Commun 2021; 12: 3803. - PubMed
  28. Trovato F, Parra R, Pracucci E, et al. Modelling genetic mosaicism of neurodevelopmental disorders in vivo by a Cre-amplifying fluorescent reporter. Nat Commun 2020; 11: 6194. - PubMed
  29. Chen T, Sun Z, Liu F, et al. RASSF1A and SIRT6 in non-small cell lung cancer: relationship with clinical outcome. Oncol Lett 2017; 14: 5759-5764. - PubMed
  30. Liu CH, Raj S, Chen CH, et al. HLA-B27-mediated activation of TNAP phosphatase promotes pathogenic syndesmophyte formation in ankylosing spondylitis. J Clin Invest 2019; 129: 5357-5373. - PubMed
  31. Kawakami K, Hirata H, Yamamura S, et al. Functional significance of Wnt inhibitory factor-1 gene in kidney cancer. Cancer Res 2009; 69: 8603-8610. - PubMed
  32. Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 2014; 30: 1363-1369. - PubMed
  33. RStudio Team. RStudio: Integrated Development for R. RStudio, Inc: Boston, 2016. [Accessed 15 July 2021]. Available from: http://www.rstudio.com/ - PubMed
  34. Pidsley R, Wong CCY, Volta M, et al. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics 2013; 14: 293. - PubMed
  35. Peters TJ, Buckley MJ, Statham AL, et al. De novo identification of differentially methylated regions in the human genome. Epigenet Chromatin 2015; 8: 6. - PubMed
  36. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016; 32: 2847-2849. - PubMed
  37. Hovestadt V, Zapatka M. conumee: Enhanced copy-number variation analysis using Illumina DNA methylation arrays. R package version 1.9.0. [Accessed 15 July 2021]. Available from: http://bioconductor.org/packages/conumee/ - PubMed
  38. Capper D, Stichel D, Sahm F, et al. Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol 2018; 136: 181-210. - PubMed
  39. Krijgsman O, Carvalho B, Meijer GA, et al. Focal chromosomal copy number aberrations in cancer - needles in a genome haystack. Biochim Biophys Acta 1843; 2014: 2698-2704. - PubMed
  40. Durinck S, Moreau Y, Kasprzyk A, et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 2005; 21: 3439-3440. - PubMed
  41. Durinck S, Spellman PT, Birney E, et al. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 2009; 4: 1184-1191. - PubMed
  42. Sondka Z, Bamford S, Cole CG, et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer 2018; 18: 696-705. - PubMed
  43. Sullivan RJ, Infante JR, Janku F, et al. First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose-escalation and expansion study. Cancer Discov 2018; 8: 184-195. - PubMed
  44. Mazieres J, Cropet C, Montané L, et al. Vemurafenib in non-small-cell lung cancer patients with BRAFV600 and BRAFnonV600 mutations. Ann Oncol 2020; 31: 289-294. - PubMed
  45. Beadling C, Jacobson-Dunlop E, Hodi FS, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res 2008; 14: 6821-6828. - PubMed
  46. Furney SJ, Turajlic S, Stamp G, et al. Genome sequencing of mucosal melanomas reveals that they are driven by distinct mechanisms from cutaneous melanoma. J Pathol 2013; 230: 261-269. - PubMed
  47. Xu L, Cheng Z, Cui C, et al. Frequent genetic aberrations in the cell cycle related genes in mucosal melanoma indicate the potential for targeted therapy. J Transl Med 2019; 17: 245. - PubMed
  48. Zhou R, Shi C, Tao W, et al. Analysis of mucosal melanoma whole-genome landscapes reveals clinically relevant genomic aberrations. Clin Cancer Res 2019; 25: 3548-3560. - PubMed
  49. Lyu J, Miao Y, Yu F, et al. CDK4 and TERT amplification in head and neck mucosal melanoma. J Oral Pathol Med 2021; 50: 971-978. - PubMed
  50. Tang B, Sheng X, Kong Y, et al. Palbociclib for treatment of metastatic melanoma with copy number variations of CDK4 pathway: case report. Chin Clin Oncol 2018; 7: 62. - PubMed
  51. Hoon DSB, Spugnardi M, Kuo C, et al. Profiling epigenetic inactivation of tumor suppressor genes in tumors and plasma from cutaneous melanoma patients. Oncogene 2004; 23: 4014-4022. - PubMed
  52. Spugnardi M, Tommasi S, Dammann R, et al. Epigenetic inactivation of RAS association domain family protein 1 (RASSF1A) in malignant cutaneous melanoma. Cancer Res 2003; 63: 1639-1643. - PubMed
  53. Straume O, Smeds J, Kumar R, et al. Significant impact of promoter hypermethylation and the 540 C>T polymorphism of CDKN2A in cutaneous melanoma of the vertical growth phase. Am J Pathol 2002; 161: 229-237. - PubMed
  54. Moulin AP, Clément G, Bosman FT, et al. Methylation of CpG island promoters in uveal melanoma. Br J Ophthalmol 2008; 92: 281-285. - PubMed
  55. Maat W, van der Velden PA, Out-Luiting C, et al. Epigenetic inactivation of RASSF1a in uveal melanoma. Invest Ophthalmol Vis Sci 2007; 48: 486-490. - PubMed
  56. Field MG, Kuznetsov JN, Bussies PL, et al. BAP1 loss is associated with DNA methylomic repatterning in highly aggressive class 2 uveal melanomas. Clin Cancer Res 2019; 25: 5663-5673. - PubMed
  57. Robertson AG, Shih J, Yau C, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 2017; 32: 204-220.e15. - PubMed
  58. Ferrier ST, Burnier JV. Novel methylation patterns predict outcome in uveal melanoma. Life (Basel) 2020; 10: 248. - PubMed
  59. Lee SH, Roh MR, Kang B, et al. PTEN methylation dependent sinonasal mucosal melanoma. Cancer Res Treat 2016; 48: 853-858. - PubMed

Publication Types