Display options
Share it on

Circ Res. 2021 Dec 03;129(12):1125-1140. doi: 10.1161/CIRCRESAHA.119.316311. Epub 2021 Oct 13.

Myofilament Phosphorylation in Stem Cell Treated Diastolic Heart Failure.

Circulation research

Daniel Soetkamp, Romain Gallet, Sarah J Parker, Ronald Holewinski, Vidya Venkatraman, Kiel Peck, Joshua I Goldhaber, Eduardo Marbán, Jennifer E Van Eyk

Affiliations

  1. Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA.

PMID: 34641704 PMCID: PMC8666591 DOI: 10.1161/CIRCRESAHA.119.316311

Abstract

RATIONALE: Phosphorylation of sarcomeric proteins has been implicated in heart failure with preserved ejection fraction (HFpEF); such changes may contribute to diastolic dysfunction by altering contractility, cardiac stiffness, Ca

OBJECTIVE: Phosphorylation changes that underlie HFpEF and those reversed by CDC therapy, with a focus on the sarcomeric subproteome were analyzed.

METHODS AND RESULTS: Dahl salt-sensitive rats fed a high-salt diet, with echocardiographically verified diastolic dysfunction, were randomly assigned to either intracoronary CDCs or placebo. Dahl salt-sensitive rats receiving low salt diet served as controls. Protein and phosphorylated Ser, Thr, and Tyr residues from left ventricular tissue were quantified by mass spectrometry. HFpEF hearts exhibited extensive hyperphosphorylation with 98% of the 529 significantly changed phospho-sites increased compared with control. Of those, 39% were located within the sarcomeric subproteome, with a large group of proteins located or associated with the Z-disk. CDC treatment partially reverted the hyperphosphorylation, with 85% of the significantly altered 76 residues hypophosphorylated. Bioinformatic upstream analysis of the differentially phosphorylated protein residues revealed PKC as the dominant putative regulatory kinase. PKC isoform analysis indicated increases in PKC α, β, and δ concentration, whereas CDC treatment led to a reversion of PKCβ. Use of PKC isoform specific inhibition and overexpression of various PKC isoforms strongly suggests that PKCβ is the dominant kinase involved in hyperphosphorylation in HFpEF and is altered with CDC treatment.

CONCLUSIONS: Increased protein phosphorylation at the Z-disk is associated with diastolic dysfunction, with PKC isoforms driving most quantified phosphorylation changes. Because CDCs reverse the key abnormalities in HFpEF and selectively reverse PKCβ upregulation, PKCβ merits being classified as a potential therapeutic target in HFpEF, a disease notoriously refractory to medical intervention.

Keywords: echocardiography; fibrosis; heart failure; mass spectrometry; phosphorylation

References

  1. Circ Res. 2004 Feb 20;94(3):296-305 - PubMed
  2. Circ Res. 2009 Sep 25;105(7):631-8, 17 p following 638 - PubMed
  3. Nat Methods. 2007 Mar;4(3):207-14 - PubMed
  4. Circ Res. 2013 Feb 15;112(4):664-74 - PubMed
  5. Cell. 2002 Dec 27;111(7):943-55 - PubMed
  6. Circulation. 2018 Apr 17;137(16):1712-1730 - PubMed
  7. Cardiovasc Res. 2013 Mar 1;97(3):464-71 - PubMed
  8. J Mol Biol. 1997 Aug 1;270(5):688-95 - PubMed
  9. FEBS Lett. 2000 Nov 24;485(2-3):183-8 - PubMed
  10. J Mol Cell Cardiol. 2015 Dec;89(Pt B):360-4 - PubMed
  11. Circulation. 2006 Apr 25;113(16):1966-73 - PubMed
  12. Growth Factors. 2010 Jun;28(3):157-65 - PubMed
  13. Nat Commun. 2012 Jun 06;3:876 - PubMed
  14. Circulation. 1999 Jan 26;99(3):384-91 - PubMed
  15. Clin Chim Acta. 2007 Jan;375(1-2):1-9 - PubMed
  16. J Biol Chem. 2012 Jan 6;287(2):848-57 - PubMed
  17. Proteomics Clin Appl. 2014 Aug;8(7-8):578-589 - PubMed
  18. J Am Coll Cardiol. 2014 Jan 21;63(2):110-22 - PubMed
  19. Cardiovasc Res. 2013 Sep 1;99(4):648-56 - PubMed
  20. J Biol Chem. 1999 Jul 9;274(28):19807-13 - PubMed
  21. Bioinformatics. 2014 Sep 1;30(17):2524-6 - PubMed
  22. Biochem Pharmacol. 1996 Apr 26;51(8):1089-93 - PubMed
  23. Circ Heart Fail. 2011 Jan;4(1):44-52 - PubMed
  24. N Engl J Med. 2004 May 6;350(19):1953-9 - PubMed
  25. Circ Res. 2009 May 22;104(10):1209-16 - PubMed
  26. J Biol Chem. 2011 Mar 25;286(12):9935-40 - PubMed
  27. Curr Opin Nephrol Hypertens. 2007 Sep;16(5):397-402 - PubMed
  28. Trends Biochem Sci. 1991 May;16(5):173-7 - PubMed
  29. Circ Heart Fail. 2017 May;10(5): - PubMed
  30. IUBMB Life. 2019 Jun;71(6):697-705 - PubMed
  31. Circ Res. 2011 Sep 30;109(8):858-66 - PubMed
  32. Neurobiol Dis. 2014 Sep;69:200-5 - PubMed
  33. J Biol Chem. 2007 Jul 13;282(28):20647-56 - PubMed
  34. Circulation. 2015 Apr 7;131(14):1247-59 - PubMed
  35. JACC Basic Transl Sci. 2017 Dec;2(6):770-789 - PubMed
  36. Circulation. 2006 Jan 17;113(2):296-304 - PubMed
  37. Circulation. 2007 Feb 20;115(7):888-95 - PubMed
  38. Sci Signal. 2013 Jun 04;6(278):rs11 - PubMed
  39. Nat Med. 2004 Dec;10(12):1336-43 - PubMed
  40. Cold Spring Harb Symp Quant Biol. 2002;67:399-408 - PubMed
  41. Cell. 2014 Dec 4;159(6):1447-60 - PubMed
  42. J Cell Biol. 2007 Jul 16;178(2):245-55 - PubMed
  43. Blood. 2002 Nov 15;100(10):3741-8 - PubMed
  44. J Biol Chem. 1996 Dec 6;271(49):31029-32 - PubMed
  45. EMBO J. 1998 Mar 16;17(6):1614-24 - PubMed
  46. Trends Biochem Sci. 1995 Jul;20(7):257-9 - PubMed
  47. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D115-9 - PubMed
  48. Circulation. 2012 Aug 14;126(7):830-9 - PubMed
  49. Cell Signal. 2011 May;23(5):928-34 - PubMed
  50. Biochem Biophys Res Commun. 2000 Jun 7;272(2):505-12 - PubMed
  51. Circ Res. 2001 Nov 23;89(11):1065-72 - PubMed
  52. Circ Res. 2014 Mar 14;114(6):1052-68 - PubMed
  53. Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450 - PubMed
  54. Circulation. 2011 Feb 1;123(4):364-73 - PubMed
  55. EMBO J. 1998 Mar 2;17(5):1192-9 - PubMed
  56. J Cell Biol. 1987 Nov;105(5):2217-23 - PubMed
  57. J Mol Cell Cardiol. 2003 Oct;35(10):1167-74 - PubMed
  58. BMC Cardiovasc Disord. 2017 Jun 12;17(1):150 - PubMed
  59. Circ Heart Fail. 2013 Nov;6(6):1239-49 - PubMed
  60. J Cell Biol. 1999 Jul 26;146(2):465-75 - PubMed
  61. Nat Med. 2003 Jan;9(1):68-75 - PubMed
  62. Cardiovasc Res. 2010 Jul 1;87(1):40-9 - PubMed
  63. Circ Res. 2008 Nov 21;103(11):1204-19 - PubMed
  64. Cardiovasc Res. 2008 Mar 1;77(4):649-58 - PubMed
  65. PLoS One. 2018 Jul 31;13(7):e0201498 - PubMed
  66. J Cardiovasc Pharmacol. 2016 Mar;67(3):193-202 - PubMed
  67. Bioinformatics. 2004 Jun 12;20(9):1466-7 - PubMed
  68. Pflugers Arch. 2014 Jun;466(6):1037-53 - PubMed
  69. Lancet. 2012 Mar 10;379(9819):895-904 - PubMed
  70. Proteomics. 2013 Jan;13(1):22-4 - PubMed
  71. J Biol Chem. 1997 Sep 26;272(39):24550-5 - PubMed
  72. Circ Res. 2009 Mar 27;104(6):780-6 - PubMed
  73. J Am Coll Cardiol. 2008 Dec 2;52(23):1858-1865 - PubMed
  74. J Mol Cell Cardiol. 1999 Jun;31(6):1215-27 - PubMed
  75. JACC Basic Transl Sci. 2016 Jan-Feb;1(1-2):14-28 - PubMed
  76. EMBO J. 1992 May;11(5):1711-6 - PubMed
  77. Mol Cell Biol. 2017 Sep 26;37(20): - PubMed
  78. J Biol Chem. 2006 Apr 28;281(17):12102-11 - PubMed
  79. Circ Res. 2003 Nov 28;93(11):1111-9 - PubMed
  80. Circ Res. 2004 Feb 20;94(3):284-95 - PubMed
  81. Cardiovasc Res. 2008 Mar 1;77(4):637-48 - PubMed
  82. J Mol Biol. 2009 Nov 6;393(4):882-97 - PubMed
  83. J Biol Chem. 2014 Jan 17;289(3):1282-93 - PubMed
  84. J Am Coll Cardiol. 2013 Jul 23;62(4):263-71 - PubMed
  85. J Vet Med Sci. 2008 Nov;70(11):1231-7 - PubMed
  86. Circ Res. 1996 Aug;79(2):153-61 - PubMed
  87. JACC Basic Transl Sci. 2018 Aug 28;3(4):521-532 - PubMed
  88. Trends Biochem Sci. 2003 Dec;28(12):655-62 - PubMed
  89. Circ Heart Fail. 2016 Oct;9(10): - PubMed
  90. Biochem Biophys Res Commun. 2002 Feb 22;291(2):385-93 - PubMed
  91. Cardiovasc Res. 2009 Jun 1;82(3):411-20 - PubMed
  92. Bioinformatics. 2008 Nov 1;24(21):2534-6 - PubMed
  93. Cardiovasc Res. 1995 Oct;30(4):478-92 - PubMed
  94. Brief Bioinform. 2011 Sep;12(5):449-62 - PubMed
  95. Am J Physiol Heart Circ Physiol. 2015 Nov;309(9):H1407-18 - PubMed

Publication Types

Grant support