Display options
Share it on

Front Cell Dev Biol. 2021 Dec 02;9:792825. doi: 10.3389/fcell.2021.792825. eCollection 2021.

The Interactome in the Evolution From Frailty to Sarcopenic Dependence.

Frontiers in cell and developmental biology

Ana Coto-Montes, Laura González-Blanco, Eduardo Antuña, Iván Menéndez-Valle, Juan Carlos Bermejo-Millo, Beatriz Caballero, Ignacio Vega-Naredo, Yaiza Potes

Affiliations

  1. Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
  2. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, Oviedo, Spain.
  3. Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain.
  4. Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Spain.

PMID: 34926470 PMCID: PMC8675940 DOI: 10.3389/fcell.2021.792825

Abstract

Biomarkers are essential tools for accurate diagnosis and effective prevention, but their validation is a pending challenge that limits their usefulness, even more so with constructs as complex as frailty. Sarcopenia shares multiple mechanisms with frailty which makes it a strong candidate to provide robust frailty biomarkers. Based on this premise, we studied the temporal evolution of cellular interactome in frailty, from independent patients to dependent ones. Overweight is a recognized cause of frailty in aging, so we studied the altered mechanisms in overweight independent elderly and evaluated their aggravation in dependent elderly. This evidence of the evolution of previously altered mechanisms would significantly support their role as real biomarkers of frailty. The results showed a preponderant role of autophagy in interactome control at both different functional points, modulating other essential mechanisms in the cell, such as mitochondrial capacity or oxidative stress. Thus, the overweight provoked in the muscle of the elderly an overload of autophagy that kept cell survival in apparently healthy individuals. This excessive and permanent autophagic effort did not seem to be able to be maintained over time. Indeed, in dependent elderly, the muscle showed a total autophagic inactivity, with devastating effects on the survival of the cell, which showed clear signs of apoptosis, and reduced functional capacity. The frail elderly are in a situation of weakness that is a precursor of dependence that can still be prevented if detection is early. Hence biomarkers are essential in this context.

Copyright © 2021 Coto-Montes, González-Blanco, Antuña, Menéndez-Valle, Bermejo-Millo, Caballero, Vega-Naredo and Potes.

Keywords: autophagy; biomarkers; dependence; frailty; interactome; sarcopenia; skeletal muscle

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Biogerontology. 2013 Jun;14(3):303-23 - PubMed
  2. J Am Geriatr Soc. 2014 Feb;62(2):253-60 - PubMed
  3. Diabetologia. 2016 Jul;59(7):1480-1491 - PubMed
  4. Int J Biochem Cell Biol. 2003 Aug;35(8):1151-6 - PubMed
  5. Nature. 2015 May 28;521(7553):525-8 - PubMed
  6. Cell Death Differ. 2015 Sep;22(9):1399-401 - PubMed
  7. DNA Cell Biol. 2015 Apr;34(4):252-60 - PubMed
  8. Int J Mol Sci. 2020 Sep 19;21(18): - PubMed
  9. Am J Nurs. 2011 Dec;111(12):38-44; quiz 45-6 - PubMed
  10. Autophagy. 2015 Nov 2;11(11):1956-1977 - PubMed
  11. Curr Opin HIV AIDS. 2010 Nov;5(6):463-6 - PubMed
  12. Gastroenterol Hepatol. 2009 May;32 Suppl 1:1-14 - PubMed
  13. Mol Cell. 2009 Feb 27;33(4):505-16 - PubMed
  14. Age (Dordr). 2012 Jun;34(3):761-71 - PubMed
  15. Aging Dis. 2019 Apr 1;10(2):217-230 - PubMed
  16. FEBS J. 2015 Dec;282(24):4672-8 - PubMed
  17. Cell Stem Cell. 2012 May 4;10(5):515-9 - PubMed
  18. Eur J Cell Biol. 2008 Oct;87(10):793-805 - PubMed
  19. Aging (Albany NY). 2016 Dec 4;8(12):3375-3389 - PubMed
  20. Dis Model Mech. 2013 Jan;6(1):25-39 - PubMed
  21. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9091-5 - PubMed
  22. Nature. 2014 Feb 20;506(7488):316-21 - PubMed
  23. Cell Metab. 2015 Jun 2;21(6):883-90 - PubMed
  24. J Chronic Dis. 1987;40(5):373-83 - PubMed
  25. Autophagy. 2016;12(3):612-3 - PubMed
  26. Int J Mol Med. 2007 Aug;20(2):145-53 - PubMed
  27. Front Physiol. 2014 Feb 03;5:32 - PubMed
  28. J Pharmacol Biomed Anal. 2013 Nov 15;1(2):1000107 - PubMed
  29. Int J Mol Sci. 2016 Oct 24;17(10): - PubMed
  30. J Cell Physiol. 2016 Jul;231(7):1450-9 - PubMed
  31. J Proteome Res. 2006 Jun;5(6):1344-53 - PubMed
  32. Eur J Sport Sci. 2021 Jun;21(6):887-894 - PubMed
  33. Nature. 2016 Jan 7;529(7584):37-42 - PubMed
  34. Histochem Cell Biol. 2014 May;141(5):519-29 - PubMed
  35. Mol Ther. 2007 Aug;15(8):1407-9 - PubMed
  36. J Physiol. 2009 Apr 1;587(Pt 7):1593-605 - PubMed
  37. J Clin Endocrinol Metab. 2010 Jun;95(6):2948-56 - PubMed
  38. Mutat Res. 2005 Jan 6;569(1-2):29-63 - PubMed
  39. Age (Dordr). 2014 Apr;36(2):851-67 - PubMed
  40. Exp Gerontol. 2018 Jul 1;107:126-129 - PubMed
  41. J Gerontol A Biol Sci Med Sci. 2001 Mar;56(3):M146-56 - PubMed
  42. Aging Cell. 2013 Aug;12(4):672-81 - PubMed
  43. Front Physiol. 2013 Sep 03;4:236 - PubMed
  44. Nutrition. 2014 Jul-Aug;30(7-8 Suppl):S21-5 - PubMed
  45. Nature. 2002 Nov 21;420(6913):333-6 - PubMed
  46. J Nutr Health Aging. 2010 Jun;14(6):457-60 - PubMed
  47. Biogerontology. 2018 Jul;19(3-4):209-221 - PubMed
  48. Free Radic Biol Med. 2017 Sep;110:31-41 - PubMed

Publication Types