Display options
Share it on

Nat Neurosci. 2021 Dec 20; doi: 10.1038/s41593-021-00973-8. Epub 2021 Dec 20.

Anthrax toxins regulate pain signaling and can deliver molecular cargoes into ANTXR2.

Nature neuroscience

Nicole J Yang, Jörg Isensee, Dylan V Neel, Andreza U Quadros, Han-Xiong Bear Zhang, Justas Lauzadis, Sai Man Liu, Stephanie Shiers, Andreea Belu, Shilpa Palan, Sandra Marlin, Jacquie Maignel, Angela Kennedy-Curran, Victoria S Tong, Mahtab Moayeri, Pascal Röderer, Anja Nitzsche, Mike Lu, Bradley L Pentelute, Oliver Brüstle, Vineeta Tripathi, Keith A Foster, Theodore J Price, R John Collier, Stephen H Leppla, Michelino Puopolo, Bruce P Bean, Thiago M Cunha, Tim Hucho, Isaac M Chiu

Affiliations

  1. Department of Immunology, Harvard Medical School, Boston, MA, USA.
  2. Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
  3. Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
  4. Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
  5. Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, USA.
  6. Ipsen Bioinnovation Ltd, Abingdon, UK.
  7. Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA.
  8. Ipsen Innovation, Les Ulis, France.
  9. Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
  10. Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.
  11. Cellomics Unit, LIFE & BRAIN GmbH, Bonn, Germany.
  12. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
  13. The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
  14. Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  15. Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
  16. Department of Microbiology, Harvard Medical School, Boston, MA, USA.
  17. Department of Immunology, Harvard Medical School, Boston, MA, USA. [email protected].

PMID: 34931070 DOI: 10.1038/s41593-021-00973-8

Abstract

Bacterial products can act on neurons to alter signaling and function. In the present study, we found that dorsal root ganglion (DRG) sensory neurons are enriched for ANTXR2, the high-affinity receptor for anthrax toxins. Anthrax toxins are composed of protective antigen (PA), which binds to ANTXR2, and the protein cargoes edema factor (EF) and lethal factor (LF). Intrathecal administration of edema toxin (ET (PA + EF)) targeted DRG neurons and induced analgesia in mice. ET inhibited mechanical and thermal sensation, and pain caused by formalin, carrageenan or nerve injury. Analgesia depended on ANTXR2 expressed by Na

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

References

  1. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009). - PubMed
  2. Deng, L. & Chiu, I. M. Microbes and pain. PLoS Pathog. 17, e1009398 (2021). - PubMed
  3. Chiu, I. M. et al. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity. eLife 3, e04660 (2014). - PubMed
  4. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018). - PubMed
  5. Sharma, N. et al. The emergence of transcriptional identity in somatosensory neurons. Nature 577, 392–398 (2020). - PubMed
  6. Young, J. A. T. & Collier, R. J. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu. Rev. Biochem. 76, 243–265 (2007). - PubMed
  7. Duesbery, N. S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734–737 (1998). - PubMed
  8. Hellmich, K. A. et al. Anthrax lethal factor cleaves mouse Nlrp1b in both toxin-sensitive and toxin-resistant macrophages. PLoS ONE 7, e49741 (2012). - PubMed
  9. Mendenhall, M. A. et al. Anthrax lethal factor cleaves regulatory subunits of phosphoinositide-3 kinase to contribute to toxin lethality. Nat. Microbiol. 5, 1464–1471 (2020). - PubMed
  10. Leppla, S. H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl Acad. Sci. USA 79, 3162–3166 (1982). - PubMed
  11. Bradley, K. A., Mogridge, J., Mourez, M., Collier, R. J. & Young, J. A. T. Identification of the cellular receptor for anthrax toxin. Nature 414, 225–229 (2001). - PubMed
  12. Scobie, H. M., Rainey, G. J. A., Bradley, K. A. & Young, J. A. T. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc. Natl Acad. Sci. USA 100, 5170–5174 (2003). - PubMed
  13. Wigelsworth, D. J. et al. Binding stoichiometry and kinetics of the interaction of a human anthrax toxin receptor, CMG2, with protective antigen. J. Biol. Chem. 279, 23349–23356 (2004). - PubMed
  14. Liu, S. et al. Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo. Proc. Natl Acad. Sci. USA 106, 12424–12429 (2009). - PubMed
  15. Bachran, C. & Leppla, S. H. Tumor targeting and drug delivery by anthrax toxin. Toxins 8, 197 (2016). - PubMed
  16. Liao, X., Rabideau, A. E. & Pentelute, B. L. Delivery of antibody mimics into mammalian cells via anthrax toxin protective antigen. ChemBioChem 15, 2458–2466 (2014). - PubMed
  17. Rabideau, A. E., Liao, X., Akçay, G. & Pentelute, B. L. Translocation of non-canonical polypeptides into cells using protective antigen. Sci. Rep. 5, 11944 (2015). - PubMed
  18. Dyer, P. D. R. et al. Disarmed anthrax toxin delivers antisense oligonucleotides and siRNA with high efficiency and low toxicity. J. Controlled Release 220, 316–328 (2015). - PubMed
  19. Maldonado-Arocho, F. J., Fulcher, J. A., Lee, B. & Bradley, K. A. Anthrax oedema toxin induces anthrax toxin receptor expression in monocyte-derived cells. Mol. Microbiol. 61, 324–337 (2006). - PubMed
  20. Liu, S. et al. Key tissue targets responsible for anthrax-toxin-induced lethality. Nature 501, 63–68 (2013). - PubMed
  21. Bürgi, J. et al. CMG2/ANTXR2 regulates extracellular collagen VI which accumulates in hyaline fibromatosis syndrome. Nat. Commun. 8, 15861 (2017). - PubMed
  22. Lau, J. et al. Temporal control of gene deletion in sensory ganglia using a tamoxifen-inducible Advillin-Cre-ERT2 recombinase mouse. Mol. Pain. 7, 100 (2011). - PubMed
  23. Aley, K. O. & Levine, J. D. Role of protein kinase a in the maintenance of inflammatory pain. J. Neurosci. 19, 2181–2186 (1999). - PubMed
  24. Isensee, J. et al. Pain modulators regulate the dynamics of PKA-RII phosphorylation in subgroups of sensory neurons. J. Cell Sci. 127, 216–229 (2014). - PubMed
  25. Isensee, J. et al. PKA-RII subunit phosphorylation precedes activation by cAMP and regulates activity termination. J. Cell Biol. 217, 2167–2184 (2018). - PubMed
  26. Chambers, S. M. et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 30, 715–720 (2012). - PubMed
  27. Firoved, A. M. et al. Bacillus anthracis edema toxin causes extensive tissue lesions and rapid lethality in mice. Am. J. Pathol. 167, 1309–1320 (2005). - PubMed
  28. Fitzgerald, E. M., Okuse, K., Wood, J. N., Dolphin, A. C. & Moss, S. J. cAMP-dependent phosphorylation of the tetrodotoxin-resistant voltage-dependent sodium channel SNS. J. Physiol. 516, 433–446 (1999). - PubMed
  29. Emery, E. C., Young, G. T., Berrocoso, E. M., Chen, L. & McNaughton, P. A. HCN2 ion channels play a central role in inflammatory and neuropathic pain. Science 333, 1462–1466 (2011). - PubMed
  30. Nuwer, M. O., Picchione, K. E. & Bhattacharjee, A. PKA-induced internalization of slack KNa channels produces dorsal root ganglion neuron hyperexcitability. J. Neurosci. 30, 14165–14172 (2010). - PubMed
  31. Lewis, J. W., Cannon, J. T. & Liebeskind, J. C. Opioid and nonopioid mechanisms of stress analgesia. Science 208, 623–625 (1980). - PubMed
  32. Hohmann, A. G. et al. An endocannabinoid mechanism for stress-induced analgesia. Nature 435, 1108–1112 (2005). - PubMed
  33. Brundege, J. M., Diao, L., Proctor, W. R. & Dunwiddie, T. V. The role of cyclic AMP as a precursor of extracellular adenosine in the rat hippocampus. Neuropharmacology 36, 1201–1210 (1997). - PubMed
  34. Post, C. Antinociceptive effects in mice after intrathecal injection of 5′-N-ethylcarboxamide adenosine. Neurosci. Lett. 51, 325–330 (1984). - PubMed
  35. Ndong, C., Landry, R. P., DeLeo, J. A. & Romero-Sandoval, E. A. Mitogen activated protein kinase phosphatase-1 prevents the development of tactile sensitivity in a rodent model of neuropathic pain. Mol. Pain 8, 34 (2012). - PubMed
  36. Ji, R.-R., Baba, H., Brenner, G. J. & Woolf, C. J. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat. Neurosci. 2, 1114–1119 (1999). - PubMed
  37. Yang, K. & Li, Y.-Q. Origins of spontaneous and noxious stimuli-evoked miniature EPSCs in substantia gelatinosa. NeuroReport 12, 39–42 (2001). - PubMed
  38. Arora, N. & Leppla, S. H. Fusions of anthrax toxin lethal factor with shiga toxin and diphtheria toxin enzymatic domains are toxic to mammalian cells. Infect. Immun. 62, 4955–4961 (1994). - PubMed
  39. Sluka, K. A. Stimulation of deep somatic tissue with capsaicin produces long-lasting mechanical allodynia and heat hypoalgesia that depends on early activation of the cAMP pathway. J. Neurosci. 22, 5687–5693 (2002). - PubMed
  40. Yang, H.-B. et al. cAMP-dependent protein kinase activated Fyn in spinal dorsal horn to regulate NMDA receptor function during inflammatory pain. J. Neurochem 116, 93–104 (2011). - PubMed
  41. Shen, Y., Zhukovskaya, N. L., Guo, Q., Florián, J. & Tang, W.-J. Calcium-independent calmodulin binding and two-metal–ion catalytic mechanism of anthrax edema factor. EMBO J. 24, 929–941 (2005). - PubMed
  42. Dal Molin, F. et al. Cell entry and cAMP imaging of anthrax edema toxin. EMBO J. 25, 5405–5413 (2006). - PubMed
  43. Witschi, R. et al. Presynaptic alpha2-GABAA receptors in primary afferent depolarization and spinal pain control. J. Neurosci. 31, 8134–8142 (2011). - PubMed
  44. Willis, W. D. Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp. Brain Res. 124, 395–421 (1999). - PubMed
  45. Celotto, L., Eroli, F., Nistri, A. & Vilotti, S. Long-term application of cannabinoids leads to dissociation between changes in cAMP and modulation of GABAA receptors of mouse trigeminal sensory neurons. Neurochem. Int. 126, 74–85 (2019). - PubMed
  46. England, S., Bevan, S. & Docherty, R. J. PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP–protein kinase A cascade. J. Physiol. 495, 429–440 (1996). - PubMed
  47. Gold, M. S., Levine, J. D. & Correa, A. M. Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J. Neurosci. 18, 10345–10355 (1998). - PubMed
  48. Ebrahimi, C. M., Sheen, T. R., Renken, C. W., Gottlieb, R. A. & Doran, K. S. Contribution of lethal toxin and edema toxin to the pathogenesis of anthrax meningitis. Infect. Immun. 79, 2510–2518 (2011). - PubMed
  49. Schmidtko, A., Lötsch, J., Freynhagen, R. & Geisslinger, G. Ziconotide for treatment of severe chronic pain. Lancet 375, 1569–1577 (2010). - PubMed
  50. Maiarù, M. et al. Selective neuronal silencing using synthetic botulinum molecules alleviates chronic pain in mice. Sci. Transl. Med. 10, eaar7384 (2018). - PubMed
  51. Verdurmen, W. P. R., Luginbühl, M., Honegger, A. & Plückthun, A. Efficient cell-specific uptake of binding proteins into the cytoplasm through engineered modular transport systems. J. Control. Release 200, 13–22 (2015). - PubMed
  52. Wu, C., Macleod, I. & Su, A. I. BioGPS and MyGene.info: organizing online, gene-centric information. Nucleic Acids Res. 41, D561–D565 (2013). - PubMed
  53. Su, A. I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl Acad. Sci. USA 101, 6062–6067 (2004). - PubMed
  54. Lattin, J. E. et al. Expression analysis of G protein-coupled receptors in mouse macrophages. Immunome Res. 4, 5 (2008). - PubMed
  55. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007). - PubMed
  56. Abrahamsen, B. et al. The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321, 702–705 (2008). - PubMed
  57. Leysath, C. E. et al. Anthrax edema factor toxicity is strongly mediated by the N-end rule. PLoS ONE 8, e74474 (2013). - PubMed
  58. Park, S. & Leppla, S. H. Optimized production and purification of bacillus anthracis lethal factor. Protein Expr. Purif. 18, 293–302 (2000). - PubMed
  59. Pomerantsev, A. P. et al. A Bacillus anthracis strain deleted for six proteases serves as an effective host for production of recombinant proteins. Protein Expr. Purif. 80, 80–90 (2011). - PubMed
  60. Tao, L. et al. Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors. Nat. Commun. 8, 1–10 (2017). - PubMed
  61. Pinho-Ribeiro, F. A. et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell https://doi.org/10.1016/j.cell.2018.04.006 (2018). - PubMed
  62. Neher, E. in Methods in Enzymology Vol. 207 123–131 (Academic, 1992). - PubMed
  63. Lu, Y. et al. Presynaptic inhibition of primary nociceptive signals to dorsal horn lamina I neurons by dopamine. J. Neurosci. 38, 8809–8821 (2018). - PubMed
  64. Safronov, B. V., Pinto, V. & Derkach, V. A. High-resolution single-cell imaging for functional studies in the whole brain and spinal cord and thick tissue blocks using light-emitting diode illumination. J. Neurosci. Methods 164, 292–298 (2007). - PubMed
  65. Szucs, P., Pinto, V. & Safronov, B. V. Advanced technique of infrared LED imaging of unstained cells and intracellular structures in isolated spinal cord, brainstem, ganglia and cerebellum. J. Neurosci. Methods 177, 369–380 (2009). - PubMed
  66. Li, J., Kritzer, E., Ford, N. C., Arbabi, S. & Baccei, M. L. Connectivity of pacemaker neurons in the neonatal rat superficial dorsal horn. J. Comp. Neurol. 523, 1038–1053 (2015). - PubMed
  67. Ikeda, H., Heinke, B., Ruscheweyh, R. & Sandkühler, J. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299, 1237–1240 (2003). - PubMed
  68. Al Ghamdi, K. S., Polgár, E. & Todd, A. J. Soma size distinguishes projection neurons from neurokinin 1 receptor-expressing interneurons in lamina I of the rat lumbar spinal dorsal horn. Neuroscience 164, 1794–1804 (2009). - PubMed
  69. Torsney, C. & MacDermott, A. B. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J. Neurosci. 26, 1833–1843 (2006). - PubMed
  70. Betelli, C., MacDermott, A. B. & Bardoni, R. Transient, activity dependent inhibition of transmitter release from low threshold afferents mediated by GABAA receptors in spinal cord lamina III/IV. Mol. Pain 11, 64 (2015). - PubMed
  71. Li, J., Kritzer, E., Craig, P. E. & Baccei, M. L. Aberrant synaptic integration in adult lamina I projection neurons following neonatal tissue damage. J. Neurosci. 35, 2438–2451 (2015). - PubMed
  72. Nakatsuka, T., Ataka, T., Kumamoto, E., Tamaki, T. & Yoshimura, M. Alteration in synaptic inputs through C-afferent fibers to substantia gelatinosa neurons of the rat spinal dorsal horn during postnatal development. Neuroscience 99, 549–556 (2000). - PubMed
  73. Clark, A. K. et al. Selective activation of microglia facilitates synaptic strength. J. Neurosci. 35, 4552–4570 (2015). - PubMed
  74. Dickie, A. C., McCormick, B., Lukito, V., Wilson, K. L. & Torsney, C. Inflammatory pain reduces C fiber activity-dependent slowing in a sex-dependent manner, amplifying nociceptive input to the spinal cord. J. Neurosci. 37, 6488–6502 (2017). - PubMed
  75. Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. & Yaksh, T. L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63 (1994). - PubMed
  76. Simpson, L. L. Studies on the binding of botulinum toxin type A to the rat phrenic nerve-hemidiaphragm preparation. Neuropharmacology 13, 683–691 (1974). - PubMed
  77. Pellett, S. Progress in cell based assays for botulinum neurotoxin detection. Curr. Top. Microbiol. Immunol. 364, 257–285 (2013). - PubMed
  78. Chiu, I. M. et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501, 52–57 (2013). - PubMed

Publication Types

Grant support