Display options
Share it on

BMC Pulm Med. 2021 Dec 18;21(1):418. doi: 10.1186/s12890-021-01786-y.

Transcatheter radiofrequency pulmonary artery denervation in swine: the evaluation of lesion degree, hemodynamics and pulmonary hypertension inducibility.

BMC pulmonary medicine

Natalia S Goncharova, Heber Ivan Condori Leandro, Aleksandr D Vakhrushev, Elena G Koshevaya, Yury A Skorik, Lubov B Mitrofanova, Lada A Murashova, Lev E Korobchenko, Elizaveta M Andreeva, Dmitry S Lebedev, Olga M Moiseeva, Evgeny N Mikhaylov

Affiliations

  1. Almazov National Medical Research Centre, 2, Akkuratova Str., Saint-Petersburg, Russian Federation, 197341. [email protected].
  2. Almazov National Medical Research Centre, 2, Akkuratova Str., Saint-Petersburg, Russian Federation, 197341.
  3. Almazov National Medical Research Centre, 2, Akkuratova Str., Saint-Petersburg, Russian Federation, 197341. [email protected].

PMID: 34922518 PMCID: PMC8684280 DOI: 10.1186/s12890-021-01786-y

Abstract

BACKGROUND: Mechanisms of positive effects of pulmonary artery (PA) denervation (PADN) remain poorly understood. The study aimed to evaluate pulmonary hemodynamic changes after PADN and their association with the extent of PA wall damage in an acute thromboxane A2 (TXA2)-induced pulmonary hypertension (PH) model in swine.

METHODS: In this experimental sham-controlled study, 17 normotensive male white Landrace pigs (the mean weight 36.2 ± 4.5 kg) were included and randomly assigned to group I (n = 9)-PH modeling before and after PADN, group II (n = 4)-PADN only, or group III (n = 4)-PH modeling before and after a sham procedure. Radiofrequency (RF) PADN was performed in the PA trunk and at the proximal parts of the right and left PAs. PA wall lesions were characterized at the autopsy study using histological and the immunohistochemical examination.

RESULTS: In groups I and II, no statistically significant changes in the mean pulmonary arterial pressure nor systemic blood pressure were found after PADN (-0.8 ± 3.4 vs 4.3 ± 8.6 mmHg, P = 0.47; and 6.0 ± 15.9 vs -8.3 ± 7.5 mmHg, P = 0.1; correspondingly). There was a trend towards a lower diastolic pulmonary arterial pressure after PADN in group I when compared with group III during repeat PH induction (34.4 ± 2.9 vs 38.0 ± 0.8; P = 0.06). Despite the presence of severe PA wall damage at the RF application sites, S100 expression was preserved in the majority of PA specimens. The presence of high-grade PA lesions was associated with HR acceleration after PADN (ρ = 0.68, p = 0.03). No significant correlation was found between the grade of PA lesion severity and PA pressure after PADN with or without PH induction.

CONCLUSIONS: Extended PADN does not affect PH induction using TXA2. Significant PA adventitia damage is associated with HR acceleration after PADN. Possible delayed effects of PADN on perivascular nerves and pulmonary hemodynamics require further research in chronic experiments.

© 2021. The Author(s).

Keywords: Large animal models; Pulmonary denervation; Pulmonary hypertension; Radiofrequency ablation; Synthetic analogue of thromboxane A2

References

  1. Circ Cardiovasc Interv. 2015 Nov;8(11):e002569 - PubMed
  2. Pulm Circ. 2019 Apr-Jun;9(2):2045894018816297 - PubMed
  3. Am J Cardiol. 1985 Oct 1;56(10):681-4 - PubMed
  4. Int J Mol Sci. 2021 Aug 16;22(16): - PubMed
  5. Pharmacol Res. 2017 Nov;125(Pt B):201-214 - PubMed
  6. Circulation. 1999 Dec 7;100(23):2336-43 - PubMed
  7. J Am Coll Cardiol. 2013 Sep 17;62(12):1092-1100 - PubMed
  8. J Am Coll Cardiol. 2020 Aug 25;76(8):916-926 - PubMed
  9. J Am Heart Assoc. 2021 Feb;10(5):e018610 - PubMed
  10. Trends Cardiovasc Med. 2021 May;31(4):252-260 - PubMed
  11. Bull Exp Biol Med. 2020 Dec;170(2):279-282 - PubMed
  12. Handb Exp Pharmacol. 2012;(208):317-41 - PubMed
  13. Biomed Res Int. 2020 Feb 17;2020:8919515 - PubMed
  14. Bull Exp Biol Med. 2021 Apr;170(6):729-733 - PubMed
  15. J Biol Chem. 2003 Aug 15;278(33):30725-31 - PubMed
  16. EuroIntervention. 2013 Jun 22;9(2):269-76 - PubMed
  17. Lasers Surg Med. 2014 Nov;46(9):689-702 - PubMed
  18. Circ Cardiovasc Interv. 2015 Nov;8(11):e002837 - PubMed
  19. Respir Res. 2017 Dec 4;18(1):201 - PubMed
  20. Curr Cardiol Rep. 2019 Sep 5;21(10):124 - PubMed
  21. Pulm Circ. 2011 Jul-Sep;1(3):419-24 - PubMed
  22. Cells. 2020 Nov 22;9(11): - PubMed
  23. J Physiol. 2011 Aug 15;589(Pt 16):4041-52 - PubMed
  24. Arterioscler Thromb Vasc Biol. 2019 Apr;39(4):704-718 - PubMed
  25. Comp Med. 2009 Jun;59(3):280-6 - PubMed
  26. JACC Cardiovasc Interv. 2015 Dec 28;8(15):2013-2023 - PubMed
  27. JACC Cardiovasc Interv. 2020 Apr 27;13(8):989-999 - PubMed
  28. EuroIntervention. 2019 Oct 20;15(8):722-730 - PubMed
  29. Circ Cardiovasc Interv. 2017 Oct;10(10): - PubMed
  30. Basic Res Cardiol. 2019 Jan 11;114(2):5 - PubMed
  31. J Cardiovasc Transl Res. 2021 Jun;14(3):546-555 - PubMed

Publication Types

Grant support