Display options
Share it on

Front Chem. 2021 Nov 04;9:764730. doi: 10.3389/fchem.2021.764730. eCollection 2021.

An Automated Aerosol Collection and Extraction System to Characterize Electronic Cigarette Aerosols.

Frontiers in chemistry

Yeongkwon Son, Andrey Khlystov

Affiliations

  1. Organic Analytical Laboratory, Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, United States.

PMID: 34805094 PMCID: PMC8600130 DOI: 10.3389/fchem.2021.764730

Abstract

Electronic cigarette (e-cigarette) market increased by 122% during 2014-2020 and is expected to continue growing rapidly. Despite their popularity, e-cigarettes are known to emit dangerous levels of toxic compounds (e.g., carbonyls), but a lack of accurate and efficient testing methods is hindering the characterization of e-cigarette aerosols emitted by a wide variety of e-cigarette devices, e-liquids, and use patterns. The aim of this study is to fill this gap by developing an automated E-cigarette Aerosol Collection and Extraction System (E-ACES) consisting of a vaping machine and a collection/extraction system. The puffing system was designed to mimic e-cigarette use patterns (i.e., power output and puff topography) by means of a variable power-supply and a flow control system. The sampling system collects e-cigarette aerosols using a combination of glass wool and a continuously wetted denuder. After the collection stage, the system is automatically washed with absorbing and extracting liquids (e.g., methanol, an acetaldehyde-DNPH solution). The entire system is controlled by a computer. E-ACES performance was evaluated against conventional methods during measurements of nicotine and carbonyl emissions from a tank type e-cigarette. Nicotine levels measured using glass fiber filters and E-ACES were not significantly different: 201.2 ± 6.2 and 212.5 ± 17 μg/puff (

Copyright © 2021 Son and Khlystov.

Keywords: DNPH; aldehyde; carbonyl; denuder; electronic cigarette; nicotine; public health; testing

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Environ Res. 2016 Aug;149:151-156 - PubMed
  2. Environ Sci Technol. 2016 Sep 6;50(17):9644-51 - PubMed
  3. Environ Sci Technol. 2016 Dec 6;50(23):13080-13085 - PubMed
  4. Chem Res Toxicol. 2019 Jun 17;32(6):1087-1095 - PubMed
  5. Int J Hyg Environ Health. 2016 May;219(3):268-77 - PubMed
  6. Environ Res. 2019 Jul;174:125-134 - PubMed
  7. Chem Res Toxicol. 2018 Sep 17;31(9):861-868 - PubMed
  8. Regul Toxicol Pharmacol. 2020 Apr;112:104588 - PubMed
  9. Regul Toxicol Pharmacol. 2016 Mar;75:58-65 - PubMed
  10. Nicotine Tob Res. 2017 Oct 1;19(10):1224-1231 - PubMed
  11. Prev Med Rep. 2016 Jun 10;4:169-78 - PubMed
  12. Nicotine Tob Res. 2016 Sep;18(9):1895-1902 - PubMed
  13. PLoS One. 2015 Feb 06;10(2):e0116732 - PubMed
  14. Environ Sci Technol. 2017 Sep 19;51(18):10806-10813 - PubMed
  15. Fed Regist. 2016 May 10;81(90):28973-9106 - PubMed
  16. Environ Health Perspect. 2016 Jun;124(6):733-9 - PubMed
  17. Toxicol Sci. 2016 Dec;154(2):332-340 - PubMed
  18. Tob Control. 2014 Mar;23(2):133-9 - PubMed
  19. Magn Reson Chem. 2016 Nov;54(11):901-904 - PubMed
  20. Environ Health Perspect. 2018 Feb 21;126(2):027010 - PubMed
  21. Environ Res. 2018 Oct;166:324-333 - PubMed
  22. Anal Sci. 2013;29(12):1219-22 - PubMed
  23. J Chromatogr Sci. 2017 Feb;55(2):142-148 - PubMed
  24. MMWR Morb Mortal Wkly Rep. 2020 Sep 18;69(37):1313-1318 - PubMed
  25. Nicotine Tob Res. 2013 Jan;15(1):158-66 - PubMed
  26. PLoS One. 2015 Jun 08;10(6):e0129296 - PubMed
  27. Int J Hyg Environ Health. 2019 Jan;222(1):136-146 - PubMed
  28. Nicotine Tob Res. 2018 Jan 5;20(2):215-223 - PubMed
  29. Int J Environ Res Public Health. 2020 Apr 17;17(8): - PubMed
  30. PLoS One. 2018 Dec 31;13(12):e0210147 - PubMed
  31. J Chromatogr A. 2010 Jun 25;1217(26):4383-8 - PubMed
  32. Food Chem Toxicol. 2018 Jan;111:64-70 - PubMed

Publication Types

Grant support