Display options
Share it on

Proc Natl Acad Sci U S A. 2022 Jan 04;119(1). doi: 10.1073/pnas.2119237119.

Members of the KCTD family are major regulators of cAMP signaling.

Proceedings of the National Academy of Sciences of the United States of America

Brian S Muntean, Subhi Marwari, Xiaona Li, Douglas C Sloan, Brian D Young, James A Wohlschlegel, Kirill A Martemyanov

Affiliations

  1. Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458; [email protected] [email protected].
  2. Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912.
  3. Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458.
  4. Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095.

PMID: 34934014 DOI: 10.1073/pnas.2119237119

Abstract

Cyclic adenosine monophosphate (cAMP) is a pivotal second messenger with an essential role in neuronal function. cAMP synthesis by adenylyl cyclases (AC) is controlled by G protein-coupled receptor (GPCR) signaling systems. However, the network of molecular players involved in the process is incompletely defined. Here, we used CRISPR/Cas9-based screening to identify that members of the potassium channel tetradimerization domain (KCTD) family are major regulators of cAMP signaling. Focusing on striatal neurons, we show that the dominant isoform KCTD5 exerts its effects through an unusual mechanism that modulates the influx of Zn

Copyright © 2021 the Author(s). Published by PNAS.

Keywords: GPCR; cAMP; neuron; striatum; zinc

Conflict of interest statement

The authors declare no competing interest.

References

  1. Beavo J. A., Brunton L. L.. Cyclic nucleotide research – Still expanding after half a century. Nat. Rev. Mol. Cell Biol.. 2002;3:710–718. - PubMed
  2. Post S. R., Hammond H. K., Insel P. A.. Beta-adrenergic receptors and receptor signaling in heart failure. Annu. Rev. Pharmacol. Toxicol.. 1999;39:343–360. - PubMed
  3. Kandel E. R.. The molecular biology of memory storage: A dialogue between genes and synapses. Science. 2001;294:1030–1038. - PubMed
  4. Davis R. L., Cherry J., Dauwalder B., Han P. L., Skoulakis E.. The cyclic AMP system and Drosophila learning. Mol. Cell. Biochem.. 1995;149-150:271–278. - PubMed
  5. Klein C., Sunahara R. K., Hudson T. Y., Heyduk T., Howlett A. C.. Zinc inhibition of cAMP signaling. J. Biol. Chem.. 2002;277:11859–11865. - PubMed
  6. Tesmer J. J., et al. Two-metal-Ion catalysis in adenylyl cyclase. Science. 1999;285:756–760. - PubMed
  7. Hu B., Nakata H., Gu C., De Beer T., Cooper D. M.. A critical interplay between Ca2+ inhibition and activation by Mg2+ of AC5 revealed by mutants and chimeric constructs. J. Biol. Chem.. 2002;277:33139–33147. - PubMed
  8. Tesmer J. J., Sunahara R. K., Gilman A. G., Sprang S. R.. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science. 1997;278:1907–1916. - PubMed
  9. Seamon K. B., Padgett W., Daly J. W.. Forskolin: Unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc. Natl. Acad. Sci. U.S.A.. 1981;78:3363–3367. - PubMed
  10. Pierce K. L., Premont R. T., Lefkowitz R. J.. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol.. 2002;3:639–650. - PubMed
  11. Wettschureck N., Offermanns S.. Mammalian G proteins and their cell type specific functions. Physiol. Rev.. 2005;85:1159–1204. - PubMed
  12. Sadana R., Dessauer C. W.. Physiological roles for G protein-regulated adenylyl cyclase isoforms: Insights from knockout and overexpression studies. Neurosignals. 2009;17:5–22. - PubMed
  13. Sunahara R. K., Dessauer C. W., Gilman A. G.. Complexity and diversity of mammalian adenylyl cyclases. Annu. Rev. Pharmacol. Toxicol.. 1996;36:461–480. - PubMed
  14. Tang W. J., Gilman A. G.. Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. Science. 1991;254:1500–1503. - PubMed
  15. Turecek R., et al. Auxiliary GABAB receptor subunits uncouple G protein βγ subunits from effector channels to induce desensitization. Neuron. 2014;82:1032–1044. - PubMed
  16. Young B. D., Sha J., Vashisht A. A., Wohlschlegel J. A.. Human multisubunit E3 ubiquitin ligase required for heterotrimeric G-protein β-subunit ubiquitination and downstream signaling. J. Proteome Res.. 2021;20:4318–4330. - PubMed
  17. Bayón Y., et al. KCTD5, a putative substrate adaptor for cullin3 ubiquitin ligases. FEBS J.. 2008;275:3900–3910. - PubMed
  18. Brockmann M., et al. Genetic wiring maps of single-cell protein states reveal an off-switch for GPCR signalling. Nature. 2017;546:307–311. - PubMed
  19. Schwenk J., et al. Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature. 2010;465:231–235. - PubMed
  20. Zheng S., Abreu N., Levitz J., Kruse A. C.. Structural basis for KCTD-mediated rapid desensitization of GABAB signalling. Nature. 2019;567:127–131. - PubMed
  21. Zuo H., et al. Structural basis for auxiliary subunit KCTD16 regulation of the GABAB receptor. Proc. Natl. Acad. Sci. U.S.A.. 2019;116:8370–8379. - PubMed
  22. Lobo M. K., Nestler E. J.. The striatal balancing act in drug addiction: Distinct roles of direct and indirect pathway medium spiny neurons. Front. Neuroanat.. 2011;5:41. - PubMed
  23. Graybiel A. M.. The basal ganglia. Curr. Biol.. 2000;10:R509–R511. - PubMed
  24. Nagai T., Yoshimoto J., Kannon T., Kuroda K., Kaibuchi K.. Phosphorylation signals in striatal medium spiny neurons. Trends Pharmacol. Sci.. 2016;37:858–871. - PubMed
  25. Nair A. G., Gutierrez-Arenas O., Eriksson O., Vincent P., Hellgren Kotaleski J.. Sensing positive versus negative reward signals through adenylyl cyclase-coupled GPCRs in direct and indirect pathway striatal medium spiny neurons. J. Neurosci.. 2015;35:14017–14030. - PubMed
  26. Gokce O., et al. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-seq. Cell Rep.. 2016;16:1126–1137. - PubMed
  27. Muntean B. S., et al. Interrogating the spatiotemporal landscape of neuromodulatory GPCR signaling by real-time imaging of cAMP in intact neurons and circuits. Cell Rep.. 2018;22:255–268. - PubMed
  28. Zhao N., Zhang A. S., Worthen C., Knutson M. D., Enns C. A.. An iron-regulated and glycosylation-dependent proteasomal degradation pathway for the plasma membrane metal transporter ZIP14. Proc. Natl. Acad. Sci. U.S.A.. 2014;111:9175–9180. - PubMed
  29. Zhang Y., Keramidas A., Lynch J. W.. The free zinc concentration in the synaptic cleft of artificial glycinergic synapses rises to at least 1 μM. Front. Mol. Neurosci.. 2016;9:88. - PubMed
  30. Maret W.. Zinc in cellular regulation: The nature and significance of “zinc signals”. Int. J. Mol. Sci.. 2017;18:2285. - PubMed
  31. Gao X., Sadana R., Dessauer C. W., Patel T. B.. Conditional stimulation of type V and VI adenylyl cyclases by G protein betagamma subunits. J. Biol. Chem.. 2007;282:294–302. - PubMed
  32. Pitcher J. A., et al. Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. Science. 1992;257:1264–1267. - PubMed
  33. Giordano N., et al. Motor learning and metaplasticity in striatal neurons: Relevance for Parkinson’s disease. Brain. 2018;141:505–520. - PubMed
  34. Muntean B. S., et al. Gαo is a major determinant of cAMP signaling in the pathophysiology of movement disorders. Cell Rep.. 2021;34:108718. - PubMed
  35. Correale S., et al. A biophysical characterization of the folded domains of KCTD12: Insights into interaction with the GABAB2 receptor. J. Mol. Recognit.. 2013;26:488–495. - PubMed
  36. Pinkas D. M., et al. Structural complexity in the KCTD family of Cullin3-dependent E3 ubiquitin ligases. Biochem. J.. 2017;474:3747–3761. - PubMed
  37. Hojyo S., et al. The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS One. 2011;6:e18059. - PubMed
  38. Frederickson C. J., Suh S. W., Silva D., Frederickson C. J., Thompson R. B.. Importance of zinc in the central nervous system: The zinc-containing neuron. J. Nutr.. 2000;130:1471S–1483S. - PubMed
  39. Paoletti P., Ascher P., Neyton J.. High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J. Neurosci.. 1997;17:5711–5725. - PubMed
  40. Westbrook G. L., Mayer M. L.. Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature. 1987;328:640–643. - PubMed
  41. Jiang Q., et al. Characterization of acid-sensing ion channels in medium spiny neurons of mouse striatum. Neuroscience. 2009;162:55–66. - PubMed
  42. Blomeley C., Bracci E.. Substance P depolarizes striatal projection neurons and facilitates their glutamatergic inputs. J. Physiol.. 2008;586:2143–2155. - PubMed
  43. Yan Z., Surmeier D. J.. D5 dopamine receptors enhance Zn2+-sensitive GABA(A) currents in striatal cholinergic interneurons through a PKA/PP1 cascade. Neuron. 1997;19:1115–1126. - PubMed
  44. Escames G., Acuña-Castroviejo D., León J., Vives F.. Melatonin interaction with magnesium and zinc in the response of the striatum to sensorimotor cortical stimulation in the rat. J. Pineal Res.. 1998;24:123–129. - PubMed
  45. Roche K. W., O’Brien R. J., Mammen A. L., Bernhardt J., Huganir R. L.. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron. 1996;16:1179–1188. - PubMed
  46. Heuschneider G., Schwartz R. D.. cAMP and forskolin decrease gamma-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes. Proc. Natl. Acad. Sci. U.S.A.. 1989;86:2938–2942. - PubMed
  47. Krall R. F., Tzounopoulos T., Aizenman E.. The function and regulation of zinc in the brain. Neuroscience. 2021;457:235–258. - PubMed
  48. Klein C., Heyduk T., Sunahara R. K.. Zinc inhibition of adenylyl cyclase correlates with conformational changes in the enzyme. Cell. Signal.. 2004;16:1177–1185. - PubMed
  49. Ando M., Oku N., Takeda A.. Zinc-mediated attenuation of hippocampal mossy fiber long-term potentiation induced by forskolin. Neurochem. Int.. 2010;57:608–614. - PubMed
  50. Sensi S. L., et al. The neurophysiology and pathology of brain zinc. J. Neurosci.. 2011;31:16076–16085. - PubMed
  51. Smaldone G., et al. The BTB domains of the potassium channel tetramerization domain proteins prevalently assume pentameric states. FEBS Lett.. 2016;590:1663–1671. - PubMed
  52. Ji A. X., et al. Structural insights into KCTD protein assembly and Cullin3 Recognition. J. Mol. Biol.. 2016;428:92–107. - PubMed
  53. Fritzius T., et al. KCTD hetero-oligomers confer unique kinetic properties on hippocampal GABAB receptor-induced K+ currents. J. Neurosci.. 2017;37:1162–1175. - PubMed
  54. Mencacci N. E., et al. A missense mutation in KCTD17 causes autosomal dominant myoclonus-dystonia. Am. J. Hum. Genet.. 2015;96:938–947. - PubMed
  55. Al-Mubarak B., et al. Whole exome sequencing reveals inherited and de novo variants in autism spectrum disorder: A trio study from Saudi families. Sci. Rep.. 2017;7:5679. - PubMed
  56. Golzio C., et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature. 2012;485:363–367. - PubMed
  57. Lee M. T., et al. Genome-wide association study of bipolar I disorder in the Han Chinese population. Mol. Psychiatry. 2011;16:548–556. - PubMed
  58. Metz K. A., et al. KCTD7 deficiency defines a distinct neurodegenerative disorder with a conserved autophagy-lysosome defect. Ann. Neurol.. 2018;84:766–780. - PubMed
  59. Faqeih E. A., et al. Phenotypic characterization of KCTD3-related developmental epileptic encephalopathy. Clin. Genet.. 2018;93:1081–1086. - PubMed
  60. Boada M., et al. ATP5H/KCTD2 locus is associated with Alzheimer’s disease risk. Mol. Psychiatry. 2014;19:682–687. - PubMed
  61. Tuschl K., et al. Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia. Nat. Commun.. 2016;7:11601. - PubMed
  62. Chen Y. Z., et al. Autosomal dominant familial dyskinesia and facial myokymia: Single exome sequencing identifies a mutation in adenylyl cyclase 5. Arch. Neurol.. 2012;69:630–635. - PubMed
  63. Fuchs T., et al. Mutations in GNAL cause primary torsion dystonia. Nat. Genet.. 2013;45:88–92. - PubMed
  64. Saitsu H., et al. Phenotypic spectrum of GNAO1 variants: Epileptic encephalopathy to involuntary movements with severe developmental delay. Eur. J. Hum. Genet.. 2016;24:129–134. - PubMed
  65. Wang D., et al. Genetic modeling of GNAO1 disorder delineates mechanisms of Gαo dysfunction. Hum. Mol. Genet.. 2021;ddab235. - PubMed
  66. Steinrücke S., et al. Novel GNB1 missense mutation in a patient with generalized dystonia, hypotonia, and intellectual disability. Neurol. Genet.. 2016;2:e106. - PubMed
  67. Lohmann K., et al. Novel GNB1 mutations disrupt assembly and function of G protein heterotrimers and cause global developmental delay in humans. Hum. Mol. Genet.. 2017;26:1078–1086. - PubMed
  68. Diggle C. P., et al. Biallelic mutations in PDE10A lead to loss of striatal PDE10A and a hyperkinetic movement disorder with onset in infancy. Am. J. Hum. Genet.. 2016;98:735–743. - PubMed

Publication Types