Display options
Share it on

Curr Protoc. 2021 Dec;1(12):e319. doi: 10.1002/cpz1.319.

CISH and IHC for the Simultaneous Detection of ZIKV RNA and Antigens in Formalin-Fixed Paraffin-Embedded Cell Blocks and Tissues.

Current protocols

Sheryll Corchuelo, Claudia Y Gómez, Alicia A Rosales, Gerardo Santamaria, Jorge Alonso Rivera, Edgar Parra Saad, Orlando Torres-Fernández, Aura Caterine Rengifo

Affiliations

  1. Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia.
  2. Grupo de Patología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia.
  3. Doctorado en Ciencias Biomédicas, Universidad Nacional de Colombia, Bogotá, DC, Colombia.

PMID: 34936226 DOI: 10.1002/cpz1.319

Abstract

Zika virus is an arthropod-borne virus that has recently emerged as a significant public health emergency due to its association with congenital malformations. Serological and molecular tests are typically used to confirm Zika virus infection. These methods, however, have limitations when the interest is in localizing the virus within the tissue and identifying the specific cell types involved in viral dissemination. Chromogenic in situ hybridization (CISH) and immunohistochemistry (IHC) are common histological techniques used for intracellular localization of RNA and protein expression, respectively. The combined use of CISH and IHC is important to obtain information about RNA replication and the location of infected target cells involved in Zika virus neuropathogenesis. There are no reports, however, of detailed procedures for the simultaneous detection of Zika virus RNA and proteins in formalin-fixed paraffin-embedded (FFPE) samples. Furthermore, the chromogenic detection methods for Zika virus RNA published thus far use expensive commercial kits, limiting their widespread use. As an alternative, we describe here a detailed and cost-effective step-by-step procedure for the simultaneous detection of Zika virus RNA and proteins in FFPE samples. First, we describe how to synthesize and purify homemade RNA probes conjugated with digoxygenin. Then, we outline the steps to perform the chromogenic detection of Zika virus RNA using these probes, and how to combine this technique with the immunodetection of viral antigens. To illustrate the entire workflow, we use FFPE samples derived from infected Vero cells as well as from human and mouse brain tissues. These methods are highly adaptable and can be used to study Zika virus or even other viruses of public health relevance, providing an optimal and economical alternative for laboratories with limited resources. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of RNA probes conjugated with digoxigenin (DIG) Basic Protocol 2: Simultaneous detection of ZIKV RNA and proteins in FFPE cell blocks and tissues.

© 2021 Wiley Periodicals LLC.

Keywords: Zika virus; cell culture; immunohistochemistry; in situ hybridization; paraffin embedding

References

  1. Alonso, M. A., de Abajo Iglesias, F. J., Castelló, J. C., Grande, L. F., Carranza, J. H., Gutiérrez, J. J., … Martínez, M. J. S. (2007). Recomendaciones sobre los aspectos éticos de las colecciones de muestras y bancos de materiales humanos con fines de investigación biomédica. Revista Española de Salud Pública, 1(1), 95-111. - PubMed
  2. Ayatollahi, H., Fani, A., Ghayoor Karimiani, E., Homaee, F., Shajiei, A., Sheikh, M., … Shams, S. F. (2017). Chromogenic in situ hybridization compared with real time quantitative polymerase chain reaction to evaluate HER2/neu status in breast cancer. Iranian Journal of Pathology, 12(2), 128-134. doi: 10.30699/ijp.2017.24870. - PubMed
  3. Bastien, D., & Lacroix, S. (2012). In situ hybridization within the CNS tissue: Combining in situ hybridization with immunofluorescence. In E. Badoer (Ed.), Visualization techniques: From immunohistochemistry to magnetic resonance imaging (pp. 53-70). Totowa, NJ: Humana Press. doi: 10.1007/978-1-61779-897-9_3. - PubMed
  4. Beaufrère, A., Bessières, B., Bonnière, M., Driessen, M., Alfano, C., Couderc, T., … Encha-Razavi, F. (2019). A clinical and histopathological study of malformations observed in fetuses infected by the Zika virus. Brain Pathology, 29(1), 114-125. doi: 10.1111/bpa.12644. - PubMed
  5. Bhatnagar, J., Rabeneck, D. B., Martines, R. B., Reagan-Steiner, S., Ermias, Y., Estetter, L. B., … Zaki, S. R. (2017). Zika virus RNA replication and persistence in brain and placental tissue. Emerging Infectious Diseases, 23(3), 405-414. doi: 10.3201/eid2303.161499. - PubMed
  6. Bollweg, B. C., Silva-Flannery, L., Spivey, P., & Hale, G. L. (2017). Optimization of commercially available Zika virus antibodies for use in a laboratory-developed immunohistochemical assay. The Journal of Pathology. Clinical Research, 4(1), 19-25. doi: 10.1002/cjp2.84. - PubMed
  7. Calvet, G., Aguiar, R. S., Melo, A. S. O., Sampaio, S. A., de Filippis, I., Fabri, A., … de Filippis, A. M. B. (2016). Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: A case study. Lancet Infectious Diseases, 16(6), 653-660. doi: 10.1016/S1473-3099(16)00095-5. - PubMed
  8. Cassidy, A., & Jones, J. (2014). Developments in in situ hybridisation. Methods, 70(1), 39-45. doi: 10.1016/j.ymeth.2014.04.006. - PubMed
  9. Cederquist, K. B., & Keating, C. D. (2010). Hybridization efficiency of molecular beacons bound to gold nanowires: Effect of surface coverage and target length. Langmuir, 26(23), 18273-18280. doi: 10.1021/la1031703. - PubMed
  10. Chuang, L. Y., Cheng, Y. H., & Yang, C. H. (2013). Specific primer design for the polymerase chain reaction. Biotechnology Letters, 35(10), 1541-1549. doi: 10.1007/s10529-013-1249-8. - PubMed
  11. Dick, G. W., Kitchen, S. F., & Haddow, A. J. (1952). Zika virus. I. Isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene, 46(5), 509-520. doi: 10.1016/0035-9203(52)90042-4. - PubMed
  12. Driggers, R. W., Ho, C. Y., Korhonen, E. M., Kuivanen, S., Jääskeläinen, A. J., Smura, T., … Vapalahti, O. (2016). Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. New England Journal of Medicine, 374(22), 2142-2151. doi: 10.1056/NEJMoa1601824. - PubMed
  13. Duerr, J. S. (2006). Immunohistochemistry. WormBook, 19, 1-61. doi: 10.1895/wormbook.1.105.1. - PubMed
  14. Ehtisham, M., Wani, F., Wani, I., Kaur, P., & Nissar, S. (2016). Fundamentals of in situ hybridization: A review. International Research Journal of Clinical Medicine, 1, 23-29. - PubMed
  15. Franco Mesa, M. L. (2013). Características, ventajas y desventajas de la hibridización in situ para la identificación de agentes patógenos. Revue de Médecine Vétérinaire, 25, 63-78. doi: 10.19052/mv.2299. - PubMed
  16. Gall, J. G., & Pardue, M. L. (1969). Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proceedings of the National Academy of Sciences of the United States of America, 63(2), 378-383. doi: 10.1073/pnas.63.2.378. - PubMed
  17. Garber, J. C., Barbee, R. W, Bielitzki, J. T., Clayton, L. A., Donovan, J. C., Hendriksen, C. F., … Wurbel, H. (2011). Guide for the care and use of laboratory animals. Washington, DC: National Academy of Sciences. - PubMed
  18. Garces Giraldo, L., López, A., Jovany, P. & Aguirre, S. (2018). Bioética en la experimentación con animales: Una mirada desde las normas para Colombia Bioethics in the experimentation with animals: A look from the norms for Colombia. Available at https://www.researchgate.net/publication/333264292_Bioetica_en_la_experimentacion_con_animales_una_mirada_desde_las_normas_para_Colombia_Bioethics_in_the_experimentation_with_animals_a_look_from_the_norms_for_Colombia. doi: 10.13140/RG.2.2.29515.64806. - PubMed
  19. Ghafoory, S., Breitkopf-Heinlein, K., Li, Q., Dzieran, J., Scholl, C., Dooley, S., & Wölfl, S. (2012). A fast and efficient polymerase chain reaction-based method for the preparation of in situ hybridization probes. Histopathology, 61(2), 306-313. doi: 10.1111/j.1365-2559.2012.04237.x. - PubMed
  20. Glover, K. K. M., Gao, A., Zahedi-Amiri, A., & Coombs, K. M. (2019). Vero cell proteomic changes induced by Zika virus infection. Proteomics, 19(4), e1800309. doi: 10.1002/pmic.201800309. - PubMed
  21. Grabinski, T. M., Kneynsberg, A., Manfredsson, F. P., & Kanaan, N. M. (2015). A method for combining RNAscope in situ hybridization with immunohistochemistry in thick free-floating brain sections and primary neuronal cultures. PLoS One, 10(3), e0120120. doi: 10.1371/journal.pone.0120120. - PubMed
  22. Gullberg, R. C., Jordan Steel, J., Moon, S. L., Soltani, E., & Geiss, B. J. (2015). Oxidative stress influences positive strand RNA virus genome synthesis and capping. Virology, 475, 219-229. doi: 10.1016/j.virol.2014.10.037. - PubMed
  23. Gurung, S., Reuter, N., Preno, A., Dubaut, J., Nadeau, H., Hyatt, K., … Myers, D. A. (2019). Zika virus infection at mid-gestation results in fetal cerebral cortical injury and fetal death in the olive baboon. PLoS Pathogens, 15(1), e1007507. doi: 10.1371/journal.ppat.1007507. - PubMed
  24. Hsi, B. L., Xiao, S., & Fletcher, J. A. (2002). Chromogenic in situ hybridization and FISH in pathology. Methods in Molecular Biology, 204, 343-351. doi: 10.1385/1-59259-300-3:343. - PubMed
  25. Hua, R., Yu, S., Liu, M., & Li, H. (2018). A PCR-based method for RNA probes and applications in neuroscience [Methods]. Frontiers in Neuroscience. 12, 266. doi: 10.3389/fnins.2018.00266. - PubMed
  26. Jackson, A. C., & Rintoul, N. E. (1992). Effects of post-mortem autolysis on the detection of rabies virus genomic RNA and mRNA in mouse brain by using in situ hybridization. Molecular and Cellular Probes, 6(3), 231-235. doi: 10.1016/0890-8508(92)90021-O. - PubMed
  27. Jensen, E. (2014). Technical review: In situ hybridization. Anatomical Record, 297(8), 1349-1353. doi: 10.1002/ar.22944. - PubMed
  28. Jessie, K., Fong, M. Y., Devi, S., Lam, S. K., & Wong, K. T. (2004). Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. Journal of Infectious Diseases, 189(8), 1411-1418. doi: 10.1086/383043. - PubMed
  29. José Tadeu de Araujo, L., Salas-Gómez, D., Midori Kimura, L., Fernandes Possatto Takahashi, J., de Souza Barrel, J., Rollin, D. C., & Mariotti Guerra, J. (2020). Culture cell block controls as a tool to the biomolecular diagnosis of infectious diseases. Applied Immunohistochemistry & Molecular Morphology, 28(6), 484-487. doi: 10.1097/PAI.0000000000000811. - PubMed
  30. Kim, K. H., Rümenapf, T., Strauss, E. G., & Strauss, J. H. (2004). Regulation of Semliki Forest virus RNA replication: A model for the control of alphavirus pathogenesis in invertebrate hosts. Virology, 323(1), 153-163. doi: 10.1016/j.virol.2004.03.009. - PubMed
  31. Kleber de Oliveira, W., Cortez-Escalante, J., De Oliveira, W. T., do Carmo, G. M., Henriques, C. M., Coelho, G. E., & Araújo de França, G. V. (2016). Increase in reported prevalence of microcephaly in infants born to women living in areas with confirmed Zika virus transmission during the first trimester of pregnancy-Brazil, 2015. Morbidity and Mortality Weekly Report, 65(9), 242-247. doi: 10.15585/mmwr.mm6509e2. - PubMed
  32. Kralik, P., & Ricchi, M. (2017). A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything [Review]. Frontiers in Microbiology, 8, 108. doi: 10.3389/fmicb.2017.00108. - PubMed
  33. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology & Evolution, 35(6), 1547-1549. doi: 10.1093/molbev/msy096. - PubMed
  34. Laiton-Donato, K., Álvarez-Díaz, D. A., Rengifo, A. C., Torres-Fernández, O., Usme-Ciro, J. A., Rivera, J. A., … Peláez-Carvajal, D. (2019). Complete genome sequence of a colombian Zika virus strain obtained from BALB/c mouse brain after intraperitoneal inoculation. Microbiology Resource Announcements, 8(46), e01719-18. doi: 10.1128/MRA.01719-18. - PubMed
  35. Lambros, M. B., Natrajan, R., & Reis-Filho, J. S. (2007). Chromogenic and fluorescent in situ hybridization in breast cancer. Human Pathology, 38(8), 1105-1122. doi: 10.1016/j.humpath.2007.04.011. - PubMed
  36. Mansuy, J. M., Lhomme, S., Cazabat, M., Pasquier, C., Martin-Blondel, G., & Izopet, J. (2018). Detection of Zika, dengue and chikungunya viruses using single-reaction multiplex real-time RT-PCR. Diagnostic Microbiology and Infectious Disease, 92(4), 284-287. doi: 10.1016/j.diagmicrobio.2018.06.019. - PubMed
  37. Mlakar, J., Korva, M., Tul, N., Popović, M., Poljšak-Prijatelj, M., Mraz, J., … Avšič Županc, T. (2016). Zika virus associated with microcephaly. New England Journal of Medicine, 374(10), 951-958. doi: 10.1056/NEJMoa1600651. - PubMed
  38. Musso, D., & Gubler, D. J. (2016). Zika virus. Clinical Microbiology Reviews, 29(3), 487-524. doi: 10.1128/CMR.00072-15. - PubMed
  39. Mysorekar, I. U., & Diamond, M. S. (2016). Modeling Zika virus infection in pregnancy. New England Journal of Medicine, 375(5), 481-484. doi: 10.1056/NEJMcibr1605445. - PubMed
  40. Nogueira, J. M. F., & Serôdio, P. (2003). Determination of the expiration date of chemical solutions. Accreditation and Quality Assurance, 8(5), 231-234. doi: 10.1007/s00769-003-0588-x. - PubMed
  41. OPS. (2018). Guía para la vigilancia de la enfermedad por el virus del Zika y sus complicaciones. Washington, D.C: OPS. - PubMed
  42. Petersen, L. R., Jamieson, D. J., Powers, A. M., & Honein, M. A. (2016). Zika virus. New England Journal of Medicine, 374(16), 1552-1563. doi: 10.1056/NEJMra1602113. - PubMed
  43. Pfankuche, V. M., Hahn, K., Bodewes, R., Hansmann, F., Habierski, A., Haverkamp, A. K., … Puff, C. (2018). Comparison of different in situ hybridization techniques for the detection of various RNA and DNA viruses. Viruses, 10(7), 384. doi: 10.3390/v10070384. - PubMed
  44. Plaskon, N. E., Adelman, Z. N., & Myles, K. M. (2009). Accurate strand-specific quantification of viral RNA. PLoS One, 4(10), e7468. doi: 10.1371/journal.pone.0007468. - PubMed
  45. Pourianfar, H. R., Javadi, A., & Grollo, L. (2012). A colorimetric-based accurate method for the determination of enterovirus 71 titer. Indian Journal of Virology, 23(3), 303-310. doi: 10.1007/s13337-012-0105-0. - PubMed
  46. Qian, X., & Lloyd, R. V. (2003). Recent developments in signal amplification methods for in situ hybridization. Diagnostic Molecular Pathology, 12(1), 1-13. doi: 10.1097/00019606-200303000-00001. - PubMed
  47. Rosa, F. E., Santos, R. M., Rogatto, S. R., & Domingues, M. A. C. (2013). Chromogenic in situ hybridization compared with other approaches to evaluate HER2/neu status in breast carcinomas. Brazilian Journal of Medical and Biological Research, 46(3), 207-216. doi: 10.1590/1414-431X20132483. - PubMed
  48. Sadeghipour, A., & Babaheidarian, P. (2019). Making formalin-fixed, paraffin embedded blocks. Methods in Molecular Biology, 1897, 253-268. doi: 10.1007/978-1-4939-8935-5_22. - PubMed
  49. Schuler-Faccini, L., Ribeiro, E. M., Feitosa, I. M. L., Horovitz, D. D. G., Cavalcanti, D. P., Pessoa, A., … Brazilian Med Genet Soc Zika, E. (2016). Possible association between Zika virus infection and microcephaly-Brazil, 2015. Morbidity and Mortality Weekly Report, 65(3), 59-62. doi: 10.15585/mmwr.mm6503e2. - PubMed
  50. Sherer, M. L., Khanal, P., Talham, G., Brannick, E. M., Parcells, M. S., & Schwarz, J. M. (2019). Zika virus infection of pregnant rats and associated neurological consequences in the offspring. PLoS One, 14(6), e0218539. doi: 10.1371/journal.pone.0218539. - PubMed
  51. Smith, M. D., Ahern, M., & Coleman, M. (2006). The use of combined immunohistochemical labeling and in situ hybridization to colocalize mRNA and protein in tissue sections. Methods in Molecular Biology, 326, 235-245. doi: 10.1385/1-59745-007-3:235. - PubMed
  52. Strauss, E. G., & Strauss, J. H. (1983). Replication strategies of the single stranded RNA viruses of eukaryotes. Current Topics in Microbiology and Immunology, 105, 1-98. doi: 10.1007/978-3-642-69159-1_1. - PubMed
  53. Tanner, M., Gancberg, D., Di Leo, A., Larsimont, D., Rouas, G., Piccart, M. J., & Isola, J. (2000). Chromogenic in situ hybridization: A practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. The American Journal of Pathology, 157(5), 1467-1472. doi: 10.1016/S0002-9440(10)64785-2. - PubMed
  54. Thawani, A., Sirohi, D., Kuhn, R. J., & Fekete, D. M. (2018). Zika virus can strongly infect and disrupt secondary organizers in the ventricular zone of the embryonic chicken brain. Cell Reports, 23(3), 692-700. doi: 10.1016/j.celrep.2018.03.080. - PubMed
  55. Thomas, J., Garcia, J., Terry, M., Lozano, I., Mahaney, S., Quintanilla, O., … Vandeberg, J., (2019). Monodelphis domestica as a fetal intra-cerebral inoculation model for Zika virus pathogenesis. bioRxiv. doi: 10.1101/785220 bioRxiv. - PubMed
  56. Valentine, G. C., Seferovic, M. D., Fowler, S. W., Major, A. M., Gorchakov, R., Berry, R., … Aagaard, K. M. (2018). Timing of gestational exposure to Zika virus is associated with postnatal growth restriction in a murine model. American Journal of Obstetrics & Gynecology, 219(4), 403.e401-403.e409. doi: 10.1016/j.ajog.2018.06.005. - PubMed
  57. Victora, C. G., Schuler-Faccini, L., Matijasevich, A., Ribeiro, E., Pessoa, A., & Barros, F. C. (2016). Microcephaly in Brazil: How to interpret reported numbers? Lancet, 387(10019), 621-624. doi: 10.1016/S0140-6736(16)00273-7. - PubMed
  58. Voytas, D. 2001. Agarose gel electrophoresis. Current Protocols in Molecular Biology, 51, 2.5A.1-2.5A.9. - PubMed
  59. Wu, K. Y., Zuo, G. L., Li, X. F., Ye, Q., Deng, Y. Q., Huang, X. Y., … Luo, Z. G. (2016). Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice. Cell Research, 26(6), 645-654. doi: 10.1038/cr.2016.58. - PubMed
  60. Zeller, R. (1989). Fixation, embedding, and sectioning of tissues, embryos, and single cells. Current Protocols in Molecular Biology, 7, 14.1.1-14.1.8. doi: 10.1002/0471142727.mb0101s07. - PubMed
  61. Zhou, K., Wang, L., Yu, D., Huang, H., Ji, H., & Mo, X. (2017). Molecular and cellular insights into Zika virus-related neuropathies. Journal of NeuroVirology, 23(3), 341-346. doi: 10.1007/s13365-017-0514-3. - PubMed

Publication Types