Display options
Share it on

Nat Immunol. 2022 Jan;23(1):23-32. doi: 10.1038/s41590-021-01095-w. Epub 2021 Dec 22.

Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8.

Nature immunology

Anna H E Roukens, Cilia R Pothast, Marion König, Wesley Huisman, Tim Dalebout, Tamar Tak, Shohreh Azimi, Yvonne Kruize, Renate S Hagedoorn, Mihaela Zlei, Frank J T Staal, Fenna J de Bie, Jacques J M van Dongen, Sesmu M Arbous, Jaimie L H Zhang, Maaike Verheij, Corine Prins, Anne M van der Does, Pieter S Hiemstra, Jutte J C de Vries, Jacqueline J Janse, Meta Roestenberg, Sebenzile K Myeni, Marjolein Kikkert, Maria Yazdanbakhsh, Mirjam H M Heemskerk, Hermelijn H Smits, Simon P Jochems,

Affiliations

  1. Department of Infectious Diseases, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands.
  2. Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
  3. Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands.
  4. Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands.
  5. Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
  6. Department of Intensive Care, Leiden University Medical Center, Leiden, the Netherlands.
  7. Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands.
  8. Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands. [email protected].

PMID: 34937933 DOI: 10.1038/s41590-021-01095-w

Abstract

Systemic immune cell dynamics during coronavirus disease 2019 (COVID-19) are extensively documented, but these are less well studied in the (upper) respiratory tract, where severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates

© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

References

  1. Diao, B. et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol. 11, 827 (2020). - PubMed
  2. Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584, 463–469 (2020). - PubMed
  3. Mann, E. R. et al. Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Sci. Immunol. 5, eabd6197 (2020). - PubMed
  4. Maucourant, C. et al. Natural killer cell immunotypes related to COVID-19 disease severity. Sci. Immunol. 5, eabd6832 (2020). - PubMed
  5. Rodriguez, L. et al. Systems-level immunomonitoring from acute to recovery phase of severe COVID-19. Cell Rep. Med. 1, 100078 (2020). - PubMed
  6. Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020). - PubMed
  7. Smith, N. et al. Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection. Nat. Immunol. 22, 1428–1439 (2021). - PubMed
  8. Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020). - PubMed
  9. Chua, R. L. et al. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 38, 970–979 (2020). - PubMed
  10. Szabo, P. A. et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 54, 797–814 (2021). - PubMed
  11. Trump, S. et al. Hypertension delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-19. Nat. Biotechnol. 39, 705–716 (2020). - PubMed
  12. Ziegler, C. G. K. et al. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. Cell 184, 4713–4733 (2021). - PubMed
  13. Grant, R. A. et al. Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature 590, 635–641 (2021). - PubMed
  14. Wauters, E. et al. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Res. 31, 272–290 (2021). - PubMed
  15. Jochems, S. P. et al. Novel analysis of immune cells from nasal microbiopsy demonstrates reliable, reproducible data for immune populations, and superior cytokine detection compared to nasal wash. PLoS ONE 12, e0169805 (2017). - PubMed
  16. Dransfield, I. et al. Neutrophil apoptosis is associated with a reduction in CD16 (Fcγ-RIII) expression. J. Immunol. 153, 1254–1263 (1994). - PubMed
  17. De Filippo, K. & Rankin, S. M. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur. J. Clin. Invest. 48, e12949 (2018). - PubMed
  18. Marini, O. et al. Mature CD10 - PubMed
  19. Dan, J. M. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 371, eabf4063 (2021). - PubMed
  20. Zhou, R. et al. Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses. Immunity 53, 864–877 (2020). - PubMed
  21. Burt, B. M. et al. CD11c identifies a subset of murine liver natural killer cells that responds to adenoviral hepatitis. J. Leukoc. Biol. 84, 1039–1046 (2008). - PubMed
  22. Argelaguet, R. et al. Multi-omics factor analysis—a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14, e8124 (2018). - PubMed
  23. Taylor, P. R. et al. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–944 (2005). - PubMed
  24. Kvedaraite, E. et al. Major alterations in the mononuclear phagocyte landscape associated with COVID-19 severity. Proc. Natl Acad. Sci. USA 118, e2018587118 (2021). - PubMed
  25. Kelly, E. A. et al. Potential contribution of IL-7 to allergen-induced eosinophilic airway inflammation in asthma. J. Immunol. 182, 1404–1410 (2009). - PubMed
  26. Pizzolla, A. et al. Resident memory CD8 - PubMed
  27. Herndler-Brandstetter, D. et al. KLRG1 - PubMed
  28. Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501 (2020). - PubMed
  29. Ferretti, A. P. et al. Unbiased screens show CD8 - PubMed
  30. Peng, Y. et al. Broad and strong memory CD4 - PubMed
  31. Hartmann, F. J., Simonds, E. F. & Bendall, S. C. A universal live cell barcoding-platform for multiplexed human single cell analysis. Sci. Rep. 8, 10770 (2018). - PubMed
  32. Zunder, E. R. et al. Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat. Protoc. 10, 316–333 (2015). - PubMed
  33. Rahman, A. H., Tordesillas, L. & Berin, M. C. Heparin reduces nonspecific eosinophil staining artifacts in mass cytometry experiments. Cytometry A 89, 601–607 (2016). - PubMed
  34. van der Velden, V. H. J. et al. Optimization and testing of dried antibody tube: the EuroFlow LST and PIDOT tubes as examples. J. Immunol. Methods 475, 112287 (2019). - PubMed
  35. van der Burg, M. et al. The EuroFlow PID orientation tube for flow cytometric diagnostic screening of primary immunodeficiencies of the lymphoid system. Front. Immunol. 10, 246 (2019). - PubMed
  36. Schuyler, R. P. et al. Minimizing batch effects in mass cytometry data. Front. Immunol. 10, 2367 (2019). - PubMed
  37. Gangaev, A. et al. Identification and characterization of a SARS-CoV-2 specific CD8 - PubMed
  38. Burrows, S. R. et al. Peptide–MHC class I tetrameric complexes display exquisite ligand specificity. J. Immunol. 165, 6229–6234 (2000). - PubMed
  39. van Bergen, C. A. et al. Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response. J. Clin. Invest. 127, 517–529 (2017). - PubMed
  40. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013). - PubMed

Publication Types

Grant support