Display options
Share it on

Radiat Oncol. 2021 Dec 20;16(1):241. doi: 10.1186/s13014-021-01965-5.

Heart atlas for retrospective cardiac dosimetry: a multi-institutional study on interobserver contouring variations and their dosimetric impact.

Radiation oncology (London, England)

Marcus Stockinger, Heiko Karle, Hannes Rennau, Sabine Sebb, Ulrich Wolf, Julia Remmele, Sandra Bührdel, Detlef Bartkowiak, Maria Blettner, Heinz Schmidberger, Daniel Wollschläger

Affiliations

  1. Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
  2. Department of Radiation Oncology, University Hospital Rostock, Südring 75, 18059, Rostock, Germany.
  3. Department of Radiation Oncology, University Hospital Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany.
  4. Department of Radiation Oncology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
  5. Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 69, 55131, Mainz, Germany.
  6. Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 69, 55131, Mainz, Germany. [email protected].

PMID: 34930360 PMCID: PMC8691015 DOI: 10.1186/s13014-021-01965-5

Abstract

PURPOSE: Cardiac effects after breast cancer radiation therapy potentially affect more patients as survival improves. The heart's heterogeneous radiation exposure and composition of functional structures call for establishing individual relationships between structure dose and specific late effects. However, valid dosimetry requires reliable contouring which is challenging for small volumes based on older, lower-quality computed tomography imaging. We developed a heart atlas for robust heart contouring in retrospective epidemiologic studies.

METHODS AND MATERIALS: The atlas defined the complete heart and geometric surrogate volumes for six cardiac structures: aortic valve, pulmonary valve, all deeper structures combined, myocardium, left anterior myocardium, and right anterior myocardium. We collected treatment planning records from 16 patients from 4 hospitals including dose calculations for 3D conformal tangential field radiation therapy for left-sided breast cancer. Six observers each contoured all patients. We assessed spatial contouring agreement and corresponding dosimetric variability.

RESULTS: Contouring agreement for the complete heart was high with a mean Jaccard similarity coefficient (JSC) of 89%, a volume coefficient of variation (CV) of 5.2%, and a mean dose CV of 4.2%. The left (right) anterior myocardium had acceptable agreement with 63% (58%) JSC, 9.8% (11.5%) volume CV, and 11.9% (8.0%) mean dose CV. Dosimetric agreement for the deep structures and aortic valve was good despite higher spatial variation. Low spatial agreement for the pulmonary valve translated to poor dosimetric agreement.

CONCLUSIONS: For the purpose of retrospective dosimetry based on older imaging, geometric surrogate volumes for cardiac organs at risk can yield better contouring agreement than anatomical definitions, but retain limitations for small structures like the pulmonary valve.

© 2021. The Author(s).

Keywords: Atlas; Contouring; Heart dose; Retrospective dosimetry

References

  1. J Clin Oncol. 2018 Aug 1;36(22):2288-2296 - PubMed
  2. Radiat Oncol. 2019 Feb 7;14(1):29 - PubMed
  3. Int J Radiat Oncol Biol Phys. 2012 Mar 15;82(4):e647-55 - PubMed
  4. Pract Radiat Oncol. 2019 May;9(3):158-171 - PubMed
  5. Radiother Oncol. 2016 Apr;119(1):65-70 - PubMed
  6. Br J Cancer. 2014 Jan 7;110(1):49-54 - PubMed
  7. Radiother Oncol. 2019 Mar;132:257-265 - PubMed
  8. Breast Cancer Res Treat. 2017 Jun;163(3):595-604 - PubMed
  9. Radiother Oncol. 2017 Mar;122(3):416-422 - PubMed
  10. Semin Radiat Oncol. 2007 Oct;17(4):258-67 - PubMed
  11. Phys Med Biol. 1995 Apr;40(4):543-74 - PubMed
  12. N Engl J Med. 2013 Mar 14;368(11):987-98 - PubMed
  13. Cancer Epidemiol Biomarkers Prev. 2015 Oct;24(10):1495-506 - PubMed
  14. Neuroimage. 2009 Oct 1;47(4):1435-47 - PubMed
  15. Br J Radiol. 2017 May;90(1073):20170036 - PubMed
  16. Int J Radiat Oncol Biol Phys. 2009 Mar 1;73(3):944-51 - PubMed
  17. Acta Oncol. 2016 Aug;55(8):959-63 - PubMed
  18. Int J Radiat Oncol Biol Phys. 2019 Mar 1;103(3):595-604 - PubMed
  19. Strahlenther Onkol. 2019 Jan;195(1):32-42 - PubMed
  20. Breast Cancer Res Treat. 2017 Nov;166(1):249-257 - PubMed
  21. Acta Oncol. 2013 May;52(4):703-10 - PubMed
  22. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S77-85 - PubMed
  23. Phys Med Biol. 1999 Nov;44(11):R99-155 - PubMed
  24. Health Phys. 2017 Jan;112(1):1-10 - PubMed
  25. Radiother Oncol. 2019 Feb;131:186-191 - PubMed
  26. Strahlenther Onkol. 2012 Feb;188(2):160-7 - PubMed
  27. Eur Heart J. 2016 Sep 21;37(36):2768-2801 - PubMed
  28. Radiother Oncol. 2020 Nov;152:103-110 - PubMed
  29. Int J Radiat Oncol Biol Phys. 2016 Mar 15;94(4):700-8 - PubMed
  30. Psychol Bull. 1979 Mar;86(2):420-8 - PubMed
  31. Int J Cancer. 2015 Jun 1;136(11):2649-58 - PubMed
  32. Circulation. 2018 Feb 20;137(8):e30-e66 - PubMed
  33. Int J Radiat Oncol Biol Phys. 2015 Nov 15;93(4):845-53 - PubMed
  34. Eur Heart J. 2018 Nov 14;39(43):3896-3903 - PubMed
  35. J Am Coll Cardiol. 2019 Jun 18;73(23):2976-2987 - PubMed
  36. J Clin Oncol. 2012 Feb 1;30(4):380-6 - PubMed
  37. Int J Radiat Oncol Biol Phys. 2015 Mar 15;91(4):825-31 - PubMed
  38. Clin Oncol (R Coll Radiol). 2010 Sep;22(7):515-25 - PubMed
  39. Int J Radiat Oncol Biol Phys. 2012 Apr 1;82(5):1689-97 - PubMed
  40. Int J Radiat Oncol Biol Phys. 2011 Jan 1;79(1):10-8 - PubMed
  41. J Thorac Oncol. 2020 Oct;15(10):1682-1690 - PubMed
  42. Med Phys. 2017 Oct;44(10):e391-e429 - PubMed
  43. Int J Radiat Oncol Biol Phys. 2019 Mar 15;103(4):985-993 - PubMed
  44. Radiother Oncol. 2013 Aug;108(2):254-8 - PubMed
  45. J Clin Oncol. 2017 Apr 10;35(11):1171-1178 - PubMed
  46. Lancet. 2014 Jun 21;383(9935):2127-35 - PubMed
  47. J Clin Oncol. 2016 Jan 20;34(3):235-43 - PubMed
  48. J Clin Oncol. 2017 May 1;35(13):1395-1402 - PubMed
  49. Radiother Oncol. 2017 Jan;122(1):72-78 - PubMed
  50. Strahlenther Onkol. 2018 Aug;194(8):711-718 - PubMed

Publication Types

Grant support