Display options
Share it on

Prog Neurobiol. 2022 Jan;208:102172. doi: 10.1016/j.pneurobio.2021.102172. Epub 2021 Sep 04.

Neuroimmune interactions and immunoengineering strategies in peripheral nerve repair.

Progress in neurobiology

Kathryn L Wofford, Robert B Shultz, Justin C Burrell, D Kacy Cullen

Affiliations

  1. Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, United States.
  2. Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, United States; Axonova Medical, LLC, Philadelphia, PA, 19104, United States.
  3. Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, United States.
  4. Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, United States; Axonova Medical, LLC, Philadelphia, PA, 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, United States. Electronic address: [email protected].

PMID: 34492307 DOI: 10.1016/j.pneurobio.2021.102172

Abstract

Peripheral nerve injuries result in disrupted cellular communication between the central nervous system and somatic distal end targets. The peripheral nervous system is capable of independent and extensive regeneration; however, meaningful target muscle reinnervation and functional recovery remain limited and may result in chronic neuropathic pain and diminished quality of life. Macrophages, the primary innate immune cells of the body, are critical contributors to regeneration of the injured peripheral nervous system. However, in some clinical scenarios, macrophages may fail to provide adequate support with optimal timing, duration, and location. Here, we review the history of immunosuppressive and immunomodulatory strategies to treat nerve injuries. Thereafter, we enumerate the ways in which macrophages contribute to successful nerve regeneration. We argue that implementing macrophage-based immunomodulatory therapies is a promising treatment strategy for nerve injuries across a wide range of clinical presentations.

Copyright © 2021 Elsevier Ltd. All rights reserved.

Keywords: Immunoengineering; Immunomodulation; Macrophages; Peripheral nerve injury; Regeneration

Publication Types