Display options
Share it on

Biol Res. 2021 Dec 24;54(1):43. doi: 10.1186/s40659-021-00365-z.

Effects of enriched-potassium diet on cardiorespiratory outcomes in experimental non-ischemic chronic heart failure.

Biological research

Karla G Schwarz, Katherin V Pereyra, Camilo Toledo, David C Andrade, Hugo S Díaz, Esteban Díaz-Jara, Domiziana Ortolani, Angélica Rios-Gallardo, Paulina Arias, Alexandra Las Heras, Ignacio Vera, Fernando C Ortiz, Nibaldo C Inestrosa, Carlos P Vio, Rodrigo Del Rio

Affiliations

  1. Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
  2. Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
  3. Centro de Fisiología y Medicina de Altura, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile.
  4. Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de Salud, Universidad Autónoma de Chile, Santiago, Chile.
  5. Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.
  6. Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
  7. Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. [email protected].
  8. Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile. [email protected].
  9. Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile. [email protected].

PMID: 34952651 DOI: 10.1186/s40659-021-00365-z

Abstract

BACKGROUND: Chronic heart failure (CHF) is a global health problem. Increased sympathetic outflow, cardiac arrhythmogenesis and irregular breathing patterns have all been associated with poor outcomes in CHF. Several studies showed that activation of the renin-angiotensin system (RAS) play a key role in CHF pathophysiology. Interestingly, potassium (K

METHODS: Adult male Sprague-Dawley rats underwent volume overload to induce non-ischemic CHF. Animals were randomly allocated to normal chow diet (CHF group) or supplemented K

RESULTS: Compared to normal chow diet, K

CONCLUSION: Our findings support that dietary K

© 2021. The Author(s).

Keywords: Autonomic imbalance; Breathing disorders; Chemoreflex function; Heart failure; Potassium supplemented diet

References

  1. Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, Hu S, Jaarsma T, Krum H, Rastogi V, Rohde LE, Samal UC, Shimokawa H, Siswanto BB, Sliwa K, Filippatos G. Heart failure: preventing disease and death worldwide. Eur J Heart Fail. 2014;1:4–25. - PubMed
  2. Desai AS, Stevenson LW. Rehospitalization for heart failure: predict or prevent? Circulation. 2012;126:501–6. - PubMed
  3. Yoon S, Eom GH. Heart failure with preserved ejection fraction: present status and future directions. Exp Mol Med. 2019;51:1–9. - PubMed
  4. van der Wal HH, van Deursen VM, van der Meer P, Voors AA. Comorbidities in heart failure. Handb Exp Pharmacol. 2017;243:35–66. - PubMed
  5. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Fonarow GS, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJV, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Wilson-Tang WH, Tsai EJ, Wilkoff BL. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:147–239. - PubMed
  6. Kishi T. Heart failure as an autonomic nervous system dysfunction. J Cardiol. 2012;59:117–22. - PubMed
  7. Florea VG, Cohn JN. The autonomic nervous system and heart failure. Circ Res. 2014;114:1815–26. - PubMed
  8. Franciosi S, Perry FK, Roston TM, Armstrong KR, Claydon VE, Sanatani S. The role of the autonomic nervous system in arrhythmias and sudden cardiac death. Auton Neurosci. 2017;205:1–11. - PubMed
  9. Lanfranchi PA, Braghiroli A, Bosimini E, Mazzuero G, Colombo R, Donner CF, Giannuzzi P. Prognostic value of nocturnal Cheyne-Stokes respiration in chronic heart failure. Circulation. 1999;99:1435–40. - PubMed
  10. Bitter T, Westerheide N, Prinz C, Hossain MS, Vogt J, Langer C, Horstkotte D, Oldenburg O. Cheyne-Stokes respiration and obstructive sleep apnoea are independent risk factors for malignant ventricular arrhythmias requiring appropriate cardioverter-defibrillator therapies in patients with congestive heart failure. Eur Heart J. 2011;32:61–74. - PubMed
  11. Sciarretta S, Paneni F, Palano F, Chin D, Tocci G, Rubattu S, Volpe M. Role of the renin-angiotensin-aldosterone system and inflammatory processes in the development and progression of diastolic dysfunction. Clin Sci. 2019;116:467–77. - PubMed
  12. Xu B, Li H. Brain mechanisms of sympathetic activation in heart failure: roles of the renin-angiotensin system, nitric oxide and pro-inflammatory cytokines. Mol Med Rep. 2015;12:7823–9. - PubMed
  13. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74:1141–8. - PubMed
  14. Koba S, Hisatome I, Watanabe T. Central command dysfunction in rats with heart failure is mediated by brain oxidative stress and normalized by exercise training. J Physiol. 2014;592:3917–31. - PubMed
  15. Díaz HS, Toledo C, Andrade DC, Marcus NJ, Del Rio R. Neuroinflammation in heart failure: new insights for an old disease. J Physiol. 2019;598:33–59. - PubMed
  16. Toledo C, Andrade DC, Lucero C, Arce-Alvarez A, Díaz HS, Aliaga V, Schultz HD, Marcus NJ, Manriquez M, Faúndez M, Del Rio R. Cardiac diastolic and autonomic dysfunction are aggravated by central chemoreflex activation in heart failure with preserved ejection fraction rats. J Physiol. 2017;595:2479–95. - PubMed
  17. Andrade DC, Arce-Alvarez A, Toledo C, Díaz HS, Lucero C, Schultz HD, Marcus NJ, Del Rio R. Exercise training improves cardiac autonomic control, cardiac function, and arrhythmogenesis in rats with preserved-ejection fraction heart failure. J Appl Physiol. 2017;123:567–77. - PubMed
  18. Dahl LK, Leitl G, Heine M. Influence of dietary potassium and sodium/potassium molar ratios on the development of salt hypertension. J Exp Med. 1972;136:318–30. - PubMed
  19. Rodrigues SL, Baldo MP, Machado RC, Forechi L, Molina MDCB, Mill JG. High potassium intake blunts the effect of elevated sodium intake on blood pressure levels. J Am Soc Hypertens. 2014;8:232–8. - PubMed
  20. Geleijnse JM, Kok FJ, Grobbee DE. Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials. J Hum Hypertens. 2003;17:471–80. - PubMed
  21. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC Jr, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA Sr, Williamson JD, Wright JT Jr. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/ NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71:1269–324. - PubMed
  22. Gonzalez AA, Gallardo M, Cespedes C, Vio CP. Potassium intake prevents the induction of the renin-angiotensin system and increases medullary ACE2 and COX-2 in the kidneys of angiotensin II-dependent hypertensive rats. Front Pharmacol. 2019;10:1212. - PubMed
  23. Vio CP, Gallardo P, Cespedes C, Salas D, Diaz-Elizondo J, Mendez N. Dietary potassium downregulates angiotensin-I converting enzyme, renin, and angiotensin converting enzyme 2. Front Pharmacol. 2020;11:920. - PubMed
  24. Fujita T, Sato Y. Changes in renal and central noradrenergic activity with potassium in DOCA-salt rats. Am J Physiol. 1984;246:F670–5. - PubMed
  25. McCabe RD, Bakarich MA, Srivastava K, Young DB. Potassium inhibits free radical formation. Hypertension. 1994;24:77–82. - PubMed
  26. Matsui H, Shimosawa T, Uetake Y, Wang H, Ogura S, Kaneko T, Liu J, Ando K, Fujita T. Protective effect of potassium against the hypertensive cardiac dysfunction: association with reactive oxygen species reduction. Hypertension. 2006;48:225–31. - PubMed
  27. Zucker IH, Xiao L, Haack KK. The central renin–angiotensin system and sympathetic nerve activity in chronic heart failure. Clin Sci. 2014;126:695–706. - PubMed
  28. Weaver CM. Potassium and health. Adv Nutr. 2013;4:368S-377S. - PubMed
  29. World Health Organization. Guideline: potassium intake for adults and children. Geneva: World Health Organization; 2012. - PubMed
  30. Bowling CB, Pitt B, Ahmed MI, Aban IB, Sanders PW, Mujib M, Campbell RC, Love TE, Aronow WS, Allman RM, Bakris GL, Ahmed A. Hypokalemia and outcomes in patients with chronic heart failure and chronic kidney disease: findings from propensity-matched studies. Cir Heart Fail. 2010;3:253–60. - PubMed
  31. Diaz HS, Andrade DC, Toledo C, Pereyra KV, Schwarz KG, Díaz-Jara E, Lucero C, Arce-Alvarez A, Schultz HD, Silva JN, Takakura AC, Moreira TS, Del MNJ, Rio R. Episodic stimulation of central chemoreceptor neurons elicits disordered breathing and autonomic dysfunction in volume overload heart failure. Am J Physiol Lung Cell Mol Physiol. 2020;318:L27–40. - PubMed
  32. Abassi Z, Goltsman I, Karram T, Winaver J, Hoffman A. Aortocaval fistula in rat: a unique model of volume-overload congestive heart failure and cardiac hypertrophy. J Biomed Biotechnol. 2011;2011:729497. - PubMed
  33. Andrade DC, Toledo C, Díaz HS, Lucero C, Arce-Álvarez A, Oliveira LM, Takakura AC, Moreira TS, Schultz HD, Marcus NJ, Alcayaga J, Del Rio R. Ablation of brainstem C1 neurons improves cardiac function in volume overload heart failure. Clin Sci. 2019;133:393–405. - PubMed
  34. Toledo C, Andrade DC, Díaz HS, Pereyra KV, Schwarz KG, Díaz-Jara E, Oliveira LM, Takakura AC, Moreira TS, Schultz HD, Marcus N, Del Rio R. Rostral ventrolateral medullary catecholaminergic neurones mediate irregular breathing pattern in volume overload heart failure rats. J Physiol. 2019;597:5799–820. - PubMed
  35. Greenwood MP, Greenwod M, Paton JFR, Murphy D. Salt appetite is reduced by a single experience of drinking hypertonic saline in the adult rat. PLoS One. 2014;9:e104802. - PubMed
  36. Rey S, Tarvainen MP, Karjalainen PA, Iturriaga R. Dynamic time-varying analysis of heart rate and blood pressure variability in cats exposed to short-term chronic intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol. 2008;295:R28–37. - PubMed
  37. Marcus NJ, Del Rio R, Schultz HD. Central role of carotid body chemoreceptors in disordered breathing and cardiorenal dysfunction in chronic heart failure. Front Physiol. 2014;5:438. - PubMed
  38. Oliveira-Sales EB, Toward MA, Campos RR, Paton JF. Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats. Auton Neurosci. 2014;183:23–9. - PubMed
  39. Pacher P, Nagayama T, Mukhopadhyay P, Bátkai S, Kass DA. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc. 2008;3:1422–34. - PubMed
  40. Ogilvie LM, Edgett BA, Huber JS, Platt MJ, Eberl H, Lutchmedial S, Brunt KR, Simpson JA. Hemodynamic assessment of diastolic function for experimental models. Am J Physiol Heart Circ Physiol. 2020;318:H1139–58. - PubMed
  41. Tobian L, Lange J, Ulm K, Wold L, Iwai J. Potassium reduces cerebral hemorrhage and death rate in hypertensive rats, even when blood pressure is not lowered. Hypertension. 1985;7:110-I114. - PubMed
  42. Kido M, Ando K, Onozato ML, Tojo A, Yoshikawa M, Ogita T, Fujita T. Protective effect of dietary potassium against vascular injury in salt-sensitive hypertension. Hypertension. 2008;51:225–31. - PubMed
  43. D’Elia L, Barba G, Cappuccio FP, Strazullo P. Potassium intake, stroke, and cardiovascular disease a meta-analysis of prospective studies. J Am Coll Cardiol. 2011;57:1210–9. - PubMed
  44. Hunt BD, Cappuccio FP. Potassium intake and stroke risk: a review of the evidence and practical considerations for achieving a minimum target. Stroke. 2014;45:1519–22. - PubMed
  45. McDonough AA, Veiras LC, Guevara CA, Ralph DL. Cardiovascular benefits associated with higher dietary K+ vs. lower dietary Na+: evidence from population and mechanistic studies. Am J Physiol Endocrinol Metab. 2017;312:E348–56. - PubMed
  46. Kortenoeven MLA, Esteva-Font C, Dimke H, Poulsen SB, Murali SK, Fenton RA. High dietary potassium causes ubiquitin-dependent degradation of the kidney sodium-chloride cotransporter. J Biol Chem. 2021;297:100915. - PubMed
  47. Veiras LC, Han J, Ralph DL, McDonough AA. Potassium supplementation prevents sodium chloride cotransporter stimulation during angiotensin II hypertension. Hypertension. 2016;68:904–12. - PubMed
  48. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–62. - PubMed
  49. Llewellyn TL, Sharma NM, Zheng H, Patel KP. Effects of exercise training on SFO-mediated sympathoexcitation during chronic heart failure. Am J Physiol Heart Circ Physiol. 2014;306:H121–31. - PubMed
  50. Wang HW, Huang BS, White RA, Chen A, Ahmad M, Leenen FH. Mineralocorticoid and angiotensin II type 1 receptors in the subfornical organ mediate angiotensin II–induced hypothalamic reactive oxygen species and hypertension. Neuroscience. 2016;329:112–21. - PubMed
  51. Yoshimura R, Sato T, Kawada T, Shishido T, Inagaki M, Miyano H, Nakahara T, Mitashita H, Takaki H, Tatewaki T, Yanagiya Y, Sugimachi M, Sunagawa K. Increased brain angiotensin receptor in rats with chronic high-output heart failure. J Card Fail. 2000;6:66–72. - PubMed
  52. Biancardi VC, Stern JE. Compromised blood–brain barrier permeability: novel mechanism by which circulating angiotensin II signals to sympathoexcitatory centres during hypertension. J Physiol. 2016;594:1591–600. - PubMed
  53. Campese VM, Shaohua YE, Huiquin Z. Oxidative stress mediates angiotensin II–dependent stimulation of sympathetic nerve activity. Hypertension. 2005;46:533–9. - PubMed
  54. Hanna IR, Taniyama Y, Szöcs K, Rocic P, Griendling KK. NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling. Antioxid Redox Signal. 2002;4:899–914. - PubMed
  55. Chan SHH, Hsu KS, Huang CC, Wang LL, Ou CC, Chan JYH. NADPH oxidase–derived superoxide anion mediates angiotensin ii–induced pressor effect via activation of p38 mitogen–activated protein kinase in the rostral ventrolateral medulla. Circ Res. 2005;97:772–80. - PubMed
  56. Giannoni A, Emdin M, Poletti R, Bramanti F, Prontera C, Piepoli M, Passino C. Clinical significance of chemosensitivity in chronic heart failure: influence on neurohormonal derangement, Cheyne-Stokes respiration and arrhythmias. Clin Sci. 2008;114:489–97. - PubMed
  57. Giannoni A, Emdin M, Bramanti F, Iudice G, Francis DP, Barsotti A, Piepolo M, Passino C. Combined increased chemosensitivity to hypoxia and hypercapnia as a prognosticator in heart failure. J Am Coll Cardiol. 2009;53:1975–80. - PubMed
  58. Yamada K, Asanoi H, Ueno H, Joho S, Takagawa J, Kameyama T, Hirai T, Nozawa T, Inoue H. Role of central sympathoexcitation in enhanced hypercapnic chemosensitivity in patients with heart failure. Am Heart J. 2004;148:964–70. - PubMed
  59. Brack T, Thüer I, Clarenbach CF, Senn O, Noll G, Russi EW, Bloch KE. Daytime Cheyne-Stokes respiration in ambulatory patients with severe congestive heart failure is associated with increased mortality. Chest. 2007;132:1463–71. - PubMed
  60. Chang HY, Hu YW, Yue CSJ, Wen YW, Yeh WT, Hsu LS, Tsai SY, Pan WH. Effect of potassium-enriched salt on cardiovascular mortality and medical expenses of elderly men. Am J Clin Nutr. 2006;83:1289–96. - PubMed

Publication Types

Grant support