Display options
Share it on

Circulation. 2021 Dec 21;144(25):2021-2034. doi: 10.1161/CIRCULATIONAHA.121.055732. Epub 2021 Nov 22.

Extracellular Matrix in Heart Failure: Role of ADAMTS5 in Proteoglycan Remodeling.

Circulation

Javier Barallobre-Barreiro, Tamás Radovits, Marika Fava, Ursula Mayr, Wen-Yu Lin, Elizaveta Ermolaeva, Diego Martínez-López, Eric L Lindberg, Elisa Duregotti, László Daróczi, Maria Hasman, Lukas E Schmidt, Bhawana Singh, Ruifang Lu, Ferheen Baig, Aleksandra Malgorzata Siedlar, Friederike Cuello, Norman Catibog, Konstantinos Theofilatos, Ajay M Shah, Maria G Crespo-Leiro, Nieves Doménech, Norbert Hübner, Béla Merkely, Manuel Mayr

Affiliations

  1. King's BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.).
  2. Heart and Vascular Center, Department of Cardiology, Semmelweis University, Budapest, Hungary (T.R., L.D., B.M.).
  3. Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (W.-Y.L.).
  4. IIS-Fundación Jiménez Díaz-Universidad Autónoma and CIBERCV, Madrid, Spain (D.M.-L.).
  5. Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (E.L.L., N.H.).
  6. Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, German Center for Heart Research (DZHK), Hamburg, Germany (F.C.).
  7. Instituto de Investigación Biomédica de A Coruña (INIBIC)-CIBERCV, Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña, Spain (M.G.C.-L., N.D.).
  8. Charité-Universitätsmedizin, Berlin, Germany (N.H.).
  9. DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany (N.H.).

PMID: 34806902 PMCID: PMC8687617 DOI: 10.1161/CIRCULATIONAHA.121.055732

Abstract

BACKGROUND: Remodeling of the extracellular matrix (ECM) is a hallmark of heart failure (HF). Our previous analysis of the secretome of murine cardiac fibroblasts returned ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) as one of the most abundant proteases. ADAMTS5 cleaves chondroitin sulfate proteoglycans such as versican. The contribution of ADAMTS5 and its substrate versican to HF is unknown.

METHODS: Versican remodeling was assessed in mice lacking the catalytic domain of ADAMTS5 (Adamts5

RESULTS: Versican and versikine, an ADAMTS-specific versican cleavage product, accumulated in patients with ischemic HF. Versikine was also elevated in a porcine model of cardiac ischemia/reperfusion injury and in murine hearts after angiotensin II infusion. In Adamts5

CONCLUSIONS: Our results in animal models and patients suggest that ADAMTS proteases are critical for versican degradation in the heart and that versican accumulation is associated with impaired cardiac function. A comprehensive characterization of the cardiac ECM in patients with ischemic HF revealed that β-blockers may have a previously unrecognized beneficial effect on cardiac chondroitin sulfate proteoglycan content.

Keywords: adrenergic beta-agonists; extracellular matrix; heart failure; proteoglycans

References

  1. Cell Biol Int. 2019 Jun;43(6):593-604 - PubMed
  2. Circulation. 2018 Jan 9;137(2):166-183 - PubMed
  3. Mol Cell Biol. 2002 Nov;22(21):7417-27 - PubMed
  4. Circulation. 2017 Jun 13;135(24):2336-2353 - PubMed
  5. Cell Rep. 2018 Apr 10;23(2):485-498 - PubMed
  6. Blood. 2016 Aug 4;128(5):680-5 - PubMed
  7. J Biol Chem. 2011 Sep 30;286(39):34298-310 - PubMed
  8. Sci Rep. 2016 Aug 31;6:32430 - PubMed
  9. Cardiovasc Res. 2006 Jun 1;70(3):422-33 - PubMed
  10. Circ Res. 2014 Feb 28;114(5):872-88 - PubMed
  11. Nature. 2020 Dec;588(7838):466-472 - PubMed
  12. J Mol Cell Cardiol. 2013 Jul;60:50-9 - PubMed
  13. FEBS J. 2019 Aug;286(15):2883-2908 - PubMed
  14. Circulation. 2016 Sep 13;134(11):817-32 - PubMed
  15. Hypertension. 2002 Aug;40(2):148-54 - PubMed
  16. J Neurosci. 2013 Apr 24;33(17):7175-83 - PubMed
  17. Cardiovasc Res. 2016 Dec;112(3):626-636 - PubMed
  18. J Embryol Exp Morphol. 1978 Feb;43:71-84 - PubMed
  19. Cell Res. 2005 Jul;15(7):483-94 - PubMed
  20. Lancet. 2011 Jan 29;377(9763):383-92 - PubMed
  21. Matrix Biol. 2014 Apr;35:34-41 - PubMed
  22. JCI Insight. 2018 Mar 8;3(5): - PubMed
  23. Genome Biol. 2018 Jul 17;19(1):87 - PubMed
  24. Am J Physiol Heart Circ Physiol. 2014 May;306(9):H1371-83 - PubMed
  25. Glycobiology. 2012 Sep;22(9):1268-77 - PubMed
  26. J Biol Chem. 2012 Jun 1;287(23):19341-5 - PubMed
  27. J Am Coll Cardiol. 2015 Sep 22;66(12):1364-74 - PubMed
  28. Mol Cell Biol. 2001 Sep;21(17):5970-8 - PubMed
  29. J Biol Chem. 2001 Apr 20;276(16):13372-8 - PubMed
  30. J Mol Cell Cardiol. 2018 Jan;114:20-28 - PubMed
  31. Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1015-26 - PubMed
  32. Circulation. 2018 Jun 5;137(23):2497-2513 - PubMed
  33. Circ Res. 2021 Jan 8;128(1):24-38 - PubMed
  34. J Biol Chem. 2014 Oct 3;289(40):27859-73 - PubMed
  35. Mol Cell Proteomics. 2011 Aug;10(8):M110.006833 - PubMed
  36. Circulation. 2018 Jul 10;138(2):166-180 - PubMed
  37. Nat Commun. 2020 Jun 2;11(1):2843 - PubMed
  38. Matrix Biol. 2019 Jan;75-76:286-299 - PubMed
  39. Circ Res. 2013 Oct 25;113(10):1138-47 - PubMed
  40. Cardiovasc Res. 2016 Jun 1;110(3):419-30 - PubMed
  41. Nat Cell Biol. 2020 Jan;22(1):108-119 - PubMed
  42. J Immunol. 2008 Feb 15;180(4):2625-33 - PubMed
  43. Arterioscler Thromb Vasc Biol. 2018 Jul;38(7):1537-1548 - PubMed
  44. J Biol Chem. 2009 Mar 27;284(13):8596-604 - PubMed
  45. Matrix Biol. 2015 Mar;42:11-55 - PubMed
  46. Circulation. 2012 Feb 14;125(6):789-802 - PubMed
  47. Am J Physiol Heart Circ Physiol. 2009 Feb;296(2):H435-41 - PubMed
  48. Circ Res. 2019 May 10;124(10):1433-1447 - PubMed

Publication Types

Grant support