Display options
Share it on

Cardiovasc Eng Technol. 2021 Dec;12(6):559-575. doi: 10.1007/s13239-020-00513-8. Epub 2021 Jan 11.

Computational Assessment of Valvular Dysfunction in Discrete Subaortic Stenosis: A Parametric Study.

Cardiovascular engineering and technology

Jason A Shar, Sundeep G Keswani, K Jane Grande-Allen, Philippe Sucosky

Affiliations

  1. Department of Mechanical and Materials Engineering, Wright State University, Dayton, USA.
  2. Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, USA.
  3. Department of Bioengineering, Rice University, Houston, USA.
  4. Department of Mechanical Engineering, Kennesaw State University, 840 Polytechnic Lane, Marietta, GA, 30060, USA. [email protected].

PMID: 33432514 PMCID: PMC8272786 DOI: 10.1007/s13239-020-00513-8

Abstract

PURPOSE: Discrete subaortic stenosis (DSS) is a left-ventricular outflow tract (LVOT) obstruction caused by a membranous lesion. DSS is associated with steep aortoseptal angles (AoSAs) and is a risk factor for aortic regurgitation (AR). However, the etiology of AR secondary to DSS remains unknown. This study aimed at quantifying computationally the impact of AoSA steepening and DSS on aortic valve (AV) hemodynamics and AR.

METHODS: An LV geometry reconstructed from cine-MRI data was connected to an AV geometry to generate a unified 2D LV-AV model. Six geometrical variants were considered: unobstructed (CTRL) and DSS-obstructed LVOT (DSS), each reflecting three AoSA variations (110°, 120°, 130°). Fluid-structure interaction simulations were run to compute LVOT flow, AV leaflet dynamics, and regurgitant fraction (RF).

RESULTS: AoSA steepening and DSS generated vortex dynamics alterations and stenotic flow conditions. While the CTRL-110° model generated the highest degree of leaflet opening asymmetry, DSS preferentially altered superior leaflet kinematics, and caused leaflet-dependent alterations in systolic fluttering. LVOT steepening and DSS subjected the leaflets to increasing WSS overloads (up to 94% increase in temporal shear magnitude), while DSS also increased WSS bidirectionality on the inferior leaflet belly (+ 0.30-point in oscillatory shear index). Although AoSA steepening and DSS increased diastolic transvalvular backflow, regurgitant fractions (RF < 7%) remained below the threshold defining clinical mild AR.

CONCLUSIONS: The mechanical interactions between AV leaflets and LVOT steepening/DSS hemodynamic derangements do not cause AR. However, the leaflet WSS abnormalities predicted in those anatomies provide new support to a mechanobiological etiology of AR secondary to DSS.

© 2021. Biomedical Engineering Society.

Keywords: Aortic regurgitation; Aortic valve; Discrete subaortic stenosis; Fluid-structure interaction modeling; Hemodynamics

References

  1. J Biomech. 2019 Aug 27;93:77-85 - PubMed
  2. J Biomech. 2016 May 3;49(7):1199-1205 - PubMed
  3. Curr Opin Cardiol. 2017 Sep;32(5):513-520 - PubMed
  4. J Comput Phys. 2013 Jul 1;244:41-62 - PubMed
  5. Thorac Cardiovasc Surg. 2005 Feb;53(1):23-7 - PubMed
  6. J Am Coll Cardiol. 1992 Apr;19(5):1013-7 - PubMed
  7. Congenit Heart Dis. 2013 Sep-Oct;8(5):450-6 - PubMed
  8. Circulation. 2013 Mar 19;127(11):1184-91, e1-4 - PubMed
  9. Biomed Eng Online. 2016 Sep 09;15(1):107 - PubMed
  10. J Card Surg. 2005 Jan-Feb;20(1):16-21 - PubMed
  11. World J Cardiol. 2015 Jun 26;7(6):331-43 - PubMed
  12. Front Bioeng Biotechnol. 2016 Oct 10;4:79 - PubMed
  13. Cardiovasc Eng. 2007 Dec;7(4):140-55 - PubMed
  14. Circulation. 1979 Mar;59(3):506-13 - PubMed
  15. Int J Numer Method Biomed Eng. 2012 Jun-Jul;28(6-7):745-60 - PubMed
  16. Heart Asia. 2012 Dec 12;4(1):171-5 - PubMed
  17. J Biomech. 2019 Sep 20;94:49-58 - PubMed
  18. Cardiovasc Pathol. 2009 Jul-Aug;18(4):236-42 - PubMed
  19. Front Bioeng Biotechnol. 2020 Feb 27;8:114 - PubMed
  20. Am J Cardiol. 1983 Oct 1;52(7):830-5 - PubMed
  21. BMC Med Imaging. 2010 Jan 11;10:1 - PubMed
  22. Ann Biomed Eng. 2009 Mar;37(3):503-15 - PubMed
  23. Int J Inflam. 2011;2011:263870 - PubMed
  24. Pediatr Cardiol. 1984 Jul-Sep;5(3):185-9 - PubMed
  25. Circulation. 2013 Apr 9;127(14):1447-50 - PubMed
  26. World J Pediatr Congenit Heart Surg. 2013 Jul;4(3):253-61 - PubMed
  27. Int J Cardiol. 2008 May 7;126(1):138-9 - PubMed
  28. Biomech Model Mechanobiol. 2012 Jan;11(1-2):171-82 - PubMed
  29. Heart. 2015 Oct;101(19):1547-53 - PubMed
  30. J Am Coll Cardiol. 1993 Nov 1;22(5):1501-8 - PubMed
  31. J Biomech. 2016 Jun 14;49(9):1482-1489 - PubMed
  32. Biomech Model Mechanobiol. 2012 Sep;11(7):1085-96 - PubMed
  33. Vet Pathol. 2009 Nov;46(6):1149-55 - PubMed
  34. J Am Coll Cardiol. 2001 Sep;38(3):835-42 - PubMed
  35. Lab Invest. 1994 Jul;71(1):127-33 - PubMed
  36. Eur J Cardiothorac Surg. 1999 May;15(5):631-8 - PubMed
  37. J Biomech. 2006;39(1):158-69 - PubMed
  38. Comput Methods Biomech Biomed Engin. 2017 Apr;20(5):492-507 - PubMed
  39. Ann Biomed Eng. 1999 Jul-Aug;27(4):572-9 - PubMed
  40. J Am Soc Echocardiogr. 2017 Apr;30(4):303-371 - PubMed
  41. J Biomech. 2018 Jun 6;74:116-125 - PubMed
  42. Comput Methods Biomech Biomed Engin. 2016;19(6):603-13 - PubMed
  43. J Am Coll Cardiol. 1997 Jul;30(1):255-9 - PubMed
  44. PLoS One. 2012;7(10):e48843 - PubMed
  45. J Biomech. 2007;40(10):2283-90 - PubMed
  46. J Am Coll Cardiol. 1997 Jul;30(1):247-54 - PubMed
  47. Comput Methods Programs Biomed. 2014 Feb;113(2):474-82 - PubMed
  48. PLoS One. 2013 Dec 23;8(12):e84433 - PubMed
  49. Cardiovasc Eng Technol. 2019 Sep;10(3):531-542 - PubMed
  50. Ann Biomed Eng. 2011 Aug;39(8):2174-85 - PubMed
  51. Circulation. 2006 Nov 28;114(22):2412-22 - PubMed

Publication Types

Grant support