Display options
Share it on

Hepatology. 2021 Dec;74(6):3441-3459. doi: 10.1002/hep.32048. Epub 2021 Sep 21.

A Mammalian Target of Rapamycin-Perilipin 3 (mTORC1-Plin3) Pathway is essential to Activate Lipophagy and Protects Against Hepatosteatosis.

Hepatology (Baltimore, Md.)

Marina Garcia-Macia, Adrián Santos-Ledo, Jack Leslie, Hannah L Paish, Amy L Collins, Rebecca S Scott, Abigail Watson, Rachel A Burgoyne, Steve White, Jeremy French, John Hammond, Lee A Borthwick, Jelena Mann, Juan P Bolaños, Viktor I Korolchuk, Fiona Oakley, Derek A Mann

Affiliations

  1. Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
  2. Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, Salamanca, Spain.
  3. Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.
  4. Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
  5. E.U.E Dacio Crespo (Universidad de Valladolid), Palencia, Spain.
  6. FibroFind Ltd, William Leech Building, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
  7. Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
  8. Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.

PMID: 34233024 DOI: 10.1002/hep.32048

Abstract

BACKGROUND AND AIMS: NAFLD is the most common hepatic pathology in western countries and no treatment is currently available. NAFLD is characterized by the aberrant hepatocellular accumulation of fatty acids in the form of lipid droplets (LDs). Recently, it was shown that liver LD degradation occurs through a process termed lipophagy, a form of autophagy. However, the molecular mechanisms governing liver lipophagy are elusive. Here, we aimed to ascertain the key molecular players that regulate hepatic lipophagy and their importance in NAFLD.

APPROACH AND RESULTS: We analyzed the formation and degradation of LD in vitro (fibroblasts and primary mouse hepatocytes), in vivo and ex vivo (mouse and human liver slices) and focused on the role of the autophagy master regulator mammalian target of rapamycin complex (mTORC) 1 and the LD coating protein perilipin (Plin) 3 in these processes. We show that the autophagy machinery is recruited to the LD on hepatic overload of oleic acid in all experimental settings. This led to activation of lipophagy, a process that was abolished by Plin3 knockdown using RNA interference. Furthermore, Plin3 directly interacted with the autophagy proteins focal adhesion interaction protein 200 KDa and autophagy-related 16L, suggesting that Plin3 functions as a docking protein or is involved in autophagosome formation to activate lipophagy. Finally, we show that mTORC1 phosphorylated Plin3 to promote LD degradation.

CONCLUSIONS: These results reveal that mTORC1 regulates liver lipophagy through a mechanism dependent on Plin3 phosphorylation. We propose that stimulating this pathway can enhance lipophagy in hepatocytes to help protect the liver from lipid-mediated toxicity, thus offering a therapeutic strategy in NAFLD.

© 2021 The Authors. Hepatology published by Wiley Periodicals LLC on behalf of American Association for the Study of Liver Diseases.

References

  1. Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol 2019;16:411-428. - PubMed
  2. Gluchowski NL, Becuwe M, Walther TC, Farese RV Jr. Lipid droplets and liver disease: from basic biology to clinical implications. Nat Rev Gastroenterol Hepatol 2017;14:343-355. - PubMed
  3. Kaushik S, Cuervo AM. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol 2015;17:759-770. - PubMed
  4. Pawella LM, Hashani M, Eiteneuer E, Renner M, Bartenschlager R, Schirmacher P, et al. Perilipin discerns chronic from acute hepatocellular steatosis. J Hepatol 2014;60:633-642. - PubMed
  5. Niso-Santano M, Malik SA, Pietrocola F, Bravo-San Pedro JM, Mariño G, Cianfanelli V, et al. Unsaturated fatty acids induce non-canonical autophagy. EMBO J 2015;34:1025-1041. - PubMed
  6. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. Nature 2009;458:1131-1135. - PubMed
  7. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 2009;119:3329-3339. - PubMed
  8. Kaushik S, Cuervo AM. AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy 2016;12:432-438. - PubMed
  9. Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol 2018;20:233-242. - PubMed
  10. Schroeder B, Schulze RJ, Weller SG, Sletten AC, Casey CA, McNiven MA. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 2015;61:1896-1907. - PubMed
  11. Rabanal-Ruiz Y, Korolchuk VI. mTORC1 and nutrient homeostasis: the central role of the lysosome. Int J Mol Sci 2018;19:818. - PubMed
  12. Mensah LB, Goberdhan DCI, Wilson C. mTORC1 signalling mediates PI3K-dependent large lipid droplet accumulation in Drosophila ovarian nurse cells. Biol Open 2017;6:563-570. - PubMed
  13. Brasaemle DL, Wolins NE. Isolation of lipid droplets from cells by density gradient centrifugation. Curr Protoc Cell Biol 2006;72:3.15.1-3.15.13. - PubMed
  14. Martinez-Lopez N, Garcia-Macia M, Sahu S, Athonvarangkul D, Liebling E, Merlo P, et al. Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab 2016;23:113-127. - PubMed
  15. Paish HL, Reed LH, Brown H, Bryan MC, Govaere O, Leslie J, et al. A bioreactor technology for modeling fibrosis in human and rodent precision-cut liver slices. Hepatology 2019;70:1377-1391. - PubMed
  16. Alkhatatbeh MJ, Lincz LF, Thorne RF. Low simvastatin concentrations reduce oleic acid-induced steatosis in HepG2 cells: an in vitro model of non-alcoholic fatty liver disease. Exp Ther Med 2016;11:1487-1492. - PubMed
  17. Liu Y, Liao L, Chen Y, Han F. Effects of daphnetin on lipid metabolism, insulin resistance and oxidative stress in OA-treated HepG2 cells. Mol Med Rep 2019;19:4673-4684. - PubMed
  18. Rohwedder A, Zhang Q, Rudge SA, Wakelam MJ. Lipid droplet formation in response to oleic acid in Huh-7 cells is mediated by the fatty acid receptor FFAR4. J Cell Sci 2014;127:3104-3115. - PubMed
  19. Lagrutta LC, Montero-Villegas S, Layerenza JP, Sisti MS, García de Bravo MM, Ves-Losada A. Reversible nuclear-lipid-droplet morphology induced by oleic acid: a link to cellular-lipid metabolism. PLOS ONE 2017;12:e0170608. - PubMed
  20. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016;12:1-222. - PubMed
  21. Ktistakis NT, Tooze SA. Digesting the expanding mechanisms of autophagy. Trends Cell Biol 2016;26:624-635. - PubMed
  22. Babashamsi MM, Koukhaloo SZ, Halalkhor S, Salimi A, Babashamsi M. ABCA1 and metabolic syndrome; a review of the ABCA1 role in HDL-VLDL production, insulin-glucose homeostasis, inflammation and obesity. Diabetes Metab Syndr 2019;13:1529-1534. - PubMed
  23. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011;12:21-35. - PubMed
  24. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010;141:290-303. - PubMed
  25. Moran-Salvador E, Garcia-Macia M, Sivaharan A, Sabater L, Zaki MYW, Oakley F, et al. Fibrogenic activity of MECP2 is regulated by phosphorylation in hepatic stellate cells. Gastroenterology 2019;157:1398-1412.e9. - PubMed
  26. Yilmaz Y, Eren F. Serum biomarkers of fibrosis and extracellular matrix remodeling in patients with nonalcoholic fatty liver disease: association with liver histology. Eur J Gastroenterol Hepatol 2019;31:43-46. - PubMed
  27. Paish HL, Reed LH, Brown H, Bryan MC, Govaere O, Leslie J, et al. A bioreactor technology for modelling fibrosis in human and rodent precision-cut liver slices. Hepatology 2019;70:1377-1391. - PubMed
  28. Houde VP, Brule S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y, et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 2010;59:1338-1348. - PubMed
  29. Gitto S, Villa E. Non-alcoholic fatty liver disease and metabolic syndrome after liver transplant. Int J Mol Sci 2016;17:490. - PubMed
  30. Han C, Wei S, He F, Liu D, Wan H, Liu H, et al. The regulation of lipid deposition by insulin in goose liver cells is mediated by the PI3K-AKT-mTOR signaling pathway. PLoS One 2015;10:e0098759. - PubMed
  31. Kim K, Qiang L, Hayden MS, Sparling DP, Purcell NH, Pajvani UB. mTORC1-independent Raptor prevents hepatic steatosis by stabilizing PHLPP2. Nat Commun 2016;7:10255. - PubMed
  32. Festuccia WT, Blanchard PG, Belchior T, Chimin P, Paschoal VA, Magdalon J, et al. PPARγ activation attenuates glucose intolerance induced by mTOR inhibition with rapamycin in rats. Am J Physiol Endocrinol Metab 2014;306:E1046-E1054. - PubMed
  33. Labbé SM, Mouchiroud M, Caron A, Secco B, Freinkman E, Lamoureux G, et al. mTORC1 is required for brown adipose tissue recruitment and metabolic adaptation to cold. Sci Rep 2016;6:37223. - PubMed
  34. Lin CW, Zhang H, Li M, Xiong X, Chen XI, Chen X, et al. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J Hepatol 2013;58:993-999. - PubMed
  35. Velázquez KT, Enos RT, Bader JE, Sougiannis AT, Carson MS, Chatzistamou I, et al. Prolonged high-fat-diet feeding promotes non-alcoholic fatty liver disease and alters gut microbiota in mice. World J Hepatol 2019;11:619-637. - PubMed
  36. Liu M, Chung S, Shelness GS, Parks JS. Hepatic ABCA1 and VLDL triglyceride production. Biochim Biophys Acta 2012;1821:770-777. - PubMed
  37. Marcelin G, Silveira ALM, Martins LB, Ferreira AV, Clément K. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J Clin Invest 2019;129:4032-4040. - PubMed
  38. Martin SZ, Wagner DC, Hörner N, Horst D, Lang H, Tagscherer KE, et al. Ex vivo tissue slice culture system to measure drug-response rates of hepatic metastatic colorectal cancer. BMC Cancer 2019;19:1030. - PubMed
  39. Neff GW, Montalbano M, Tzakis AG. Ten years of sirolimus therapy in orthotopic liver transplant recipients. Transplant Proc 2003;35:209S-216S. - PubMed
  40. Bulankina AV, Deggerich A, Wenzel D, Mutenda K, Wittmann JG, Rudolph MG, et al. TIP47 functions in the biogenesis of lipid droplets. J Cell Biol 2009;185:641-655. - PubMed
  41. Jacomin AC, Samavedam S, Promponas V, Nezis IP. iLIR database: A web resource for LIR motif-containing proteins in eukaryotes. Autophagy 2016;12:1945-1953. - PubMed
  42. Smith MD, Harley ME, Kemp AJ, Wills J, Lee M, Arends M, et al. CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis. Dev Cell 2018;44:217-232.e11. - PubMed
  43. Nishimura T, Kaizuka T, Cadwell K, Sahani MH, Saitoh T, Akira S, et al. FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep 2013;14:284-291. - PubMed
  44. Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 2008;181:497-510. - PubMed

Publication Types

Grant support