Display options
Share it on

Arch Public Health. 2021 Dec 23;79(1):231. doi: 10.1186/s13690-021-00749-3.

Comparison of metabolic syndrome prevalence using four different definitions - a population-based study in Finland.

Archives of public health = Archives belges de sante publique

Elsi Haverinen, Laura Paalanen, Luigi Palmieri, Alicia Padron-Monedero, Isabel Noguer-Zambrano, Rodrigo Sarmiento Suárez, Hanna Tolonen,

Affiliations

  1. Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Mannerheimintie 166, 00271, Helsinki, Finland.
  2. Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Mannerheimintie 166, 00271, Helsinki, Finland. [email protected].
  3. Department of Cardiovascular, Endocrine-metabolic Diseases and Aging Istituto Superiore di Sanità (ISS), Via Giano della Bella, 34, 00161, Rome, Italy.
  4. National School of Public Health, Instituto de Salud Carlos III, C/ Monforte de Lemos 5, Madrid, Spain.

PMID: 34949223 DOI: 10.1186/s13690-021-00749-3

Abstract

BACKGROUND: Metabolic syndrome (MetS) is a public health problem in Europe, affecting all age groups. Several MetS definitions are available. The aim of this study was to compare four different MetS definitions in the Finnish adult population, to assess their agreement and to evaluate the impact of the choice of the definition on the prevalence of MetS.

METHODS: Data from FinHealth 2017, a cross-sectional national population health survey, focusing on adults aged 25 years or older were used in the analysis (n=5687). Measured data on anthropometrics, blood pressure and biomarkers together with questionnaire data were used to classify the participants into the MetS categories according to the four definitions. The definitions chosen for the comparison were those by the World Health Organization (WHO) (1998), National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) (2004), International Diabetes Federation (IDF) (2005), and Joint Interim Statement (JIS) (2009).

RESULTS: The four MetS definitions resulted in substantially different MetS prevalence: 17.7% by WHO, 33.3% by NCEP-ATP III, 41.5% by IDF, and 43.0% by JIS. Regardless of the definition used, the prevalence of MetS increased with age. The prevalence of the different components varied between the definitions, depending on the different cut-off points adopted. Out of all participants, only 13.6% were identified to have MetS according to all four definitions. Agreement between participants recognised by different MetS definitions, estimated through kappa coefficients, was almost perfect for IDF vs. JIS (0.97), strong for JIS vs. NCEP-ATP III (0.80), moderate for IDF vs. NCEP-ATP III (0.76) and weak for WHO vs. NCEP-ATP III (0.42), WHO vs. IDF (0.41) and WHO vs. JIS (0.40).

CONCLUSIONS: Differences between observed prevalence of MetS in Finnish men and women using different MetS definitions were large. For cross-country comparisons, as well as for trend analyses within a country, it is essential to use the same MetS definition to avoid discrepancies in classification due to differences in used definitions.

© 2021. The Author(s).

Keywords: Diabetes; Health examination survey; Indicators; Metabolic syndrome; Population health survey; Standardization

References

  1. Lee SE, Han K, Kang YM, Kim SO, Cho YK, Ko KS, Park JY, Lee KU, Koh EH; Taskforce Team of Diabetes Fact Sheet of the Korean Diabetes Association. Trends in the prevalence of metabolic syndrome and its components in South Korea: Findings from the Korean National Health Insurance Service Database (2009-2013). PLoS One. 2018; 22;13(3):e0194490. - PubMed
  2. Ranasinghe P, Mathangasinghe Y, Jayawardena R, Hills AP, Misra A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: a systematic review. BMC Public Health. 2017;17(1):101. - PubMed
  3. Hu G, Lindström J, Jousilahti P, Peltonen M, Sjöberg L, Kaaja R, Sundvall J, Tuomilehto J. The increasing prevalence of metabolic syndrome among Finnish men and women over a decade. J Clin Endocrinol Metab. 2008;93(3):832–6. - PubMed
  4. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–553. - PubMed
  5. Galassi A, Reynolds K, He J. Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med. 2006;119(10):812–819. - PubMed
  6. Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig Liver Dis. 2015;47(3):181–190. - PubMed
  7. Li W, Ma D, Liu M, et al. Association between metabolic syndrome and risk of stroke: a meta-analysis of cohort studies. Cerebrovasc Dis. 2008;25(6):539–547. - PubMed
  8. Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, Rinfret S, Schiffrin EL, Eisenberg MJ. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):1113–32. - PubMed
  9. Giampaoli S, Stamler J, Donfrancesco C, Panico S, Vanuzzo D, Cesana G, Mancia G, Pilotto L, Mattiello A, Chiodini P, and Palmieri L for the Progetto CUORE Research Group. The metabolic syndrome: A critical appraisal based on the CUORE epidemiologic study. Preventive Medicine. 2009;48(6):525–31. - PubMed
  10. Vishram J, Borglykke A, Andreasen A, Jeppesen J, Ibsen H, Jørgensen T, Palmieri L, Giampaoli S, Donfrancesco C, Kee F, Mancia G, Cesana G, Kuulasmaa K, Salomaa V, Sans S, Ferrieres J, Dallongeville J, Soderberg S, Arveiler D, Wagner A, Tunstall-Pedoe H, Drygas W, Olsen M, on behalf of the MORGAM Project. Impact of Age and Gender on the Prevalence and Prognostic Importance of the Metabolic Syndrome and Its Components in Europeans. The MORGAM Prospective Cohort Project. PLOS ONE. 2014;9(9):e107294 - PubMed
  11. Esposito K, Giugliano D. The metabolic syndrome and inflammation: association or causation? Nutr Metab Cardiovasc Dis. 2004;14(5):228–32. - PubMed
  12. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10),576–90. - PubMed
  13. Oliveira RG, Guedes DP. Physical Activity, Sedentary Behavior, Cardiorespiratory Fitness and Metabolic Syndrome in Adolescents: Systematic Review and Meta-Analysis of Observational Evidence. PLoS One. 2016;11(12). - PubMed
  14. Giugliano D, Ceriello A, Esposito K. The effects of diet on inflammation: emphasis on the metabolic syndrome. J Am Coll Cardiol. 2006;48(4):677–685. - PubMed
  15. Sotos-Prieto M, Ortolá R, Ruiz-Canela M, Garcia-Esquinas E, Martínez-Gómez D, Lopez-Garcia E, Martínez-González MÁ, Rodriguez-Artalejo F. Association between the Mediterranean lifestyle, metabolic syndrome and mortality: a whole-country cohort in Spain. Cardiovasc Diabetol. 2021; 5;20(1):5. - PubMed
  16. Christensen KY, Raymond M, Meiman J. Perfluoroalkyl substances and metabolic syndrome. Int J Hyg Environ Health. 2019;222(1):147–153. - PubMed
  17. Shim YH, Ock JW, Kim YJ, Kim Y, Kim SY, Kang D. Association between Heavy Metals, Bisphenol A, Volatile Organic Compounds and Phthalates and Metabolic Syndrome. Int J Environ Res Public Health. 2019;16(4):671. - PubMed
  18. Waterhouse DF, McLaughlin AM, Sheehan F, O’Shea D. An examination of the prevalence of IDF- and ATPIII-defined metabolic syndrome in an Irish screening population. Ir J Med Sci. 2009;178(2):161–6. - PubMed
  19. Qiao Q; DECODE Study Group. Comparison of different definitions of the metabolic syndrome in relation to cardiovascular mortality in European men and women. Diabetologia. 2006;49(12):2837–2846. - PubMed
  20. Nilsson PM, Engström G, Hedblad B. The metabolic syndrome and incidence of cardiovascular disease in non-diabetic subjects--a population-based study comparing three different definitions. Diabet Med. 2007;24(5):464–72. - PubMed
  21. Scuteri A, Laurent S, Cucca F, Cockcroft J, Cunha PG, Mañas LR, Mattace Raso FU, Muiesan ML, Ryliškytė L, Rietzschel E, Strait J, Vlachopoulos C, Völzke H, Lakatta EG, Nilsson PM; Metabolic Syndrome and Arteries Research (MARE) Consortium. Metabolic syndrome across Europe: different clusters of risk factors. Eur J Prev Cardiol. 2015;22(4):486–91. - PubMed
  22. Hildrum B, Mykletun A, Hole T, Midthjell K, Dahl AA. Age-specific prevalence of the metabolic syndrome defined by the International Diabetes Federation and the National Cholesterol Education Program: the Norwegian HUNT 2 study. BMC Public Health. 2007;7:220. - PubMed
  23. Guallar-Castillón P, Pérez RF, López García E, León-Muñoz LM, Aguilera MT, Graciani A, Gutiérrez-Fisac JL, Banegas JR, Rodríguez-Artalejo F. Magnitude and management of metabolic syndrome in Spain in 2008-2010: the ENRICA study. Rev Esp Cardiol (Engl Ed). 2014;67(5):367–73. - PubMed
  24. Vanlancker T, Schaubroeck E, Vyncke K. et al. on the behalf of the HELENA project group. Comparison of definitions for the metabolic syndrome in adolescents. The HELENA study. Eur J Pediatr, 2017; 176:241–252. - PubMed
  25. Nolan PB, Carrick-Ranson G, Stinear JW, Reading SA, Dalleck LC. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Prev Med Rep. 2017;7:211–215. - PubMed
  26. Pucci G, Alcidi R, Tap L, Battista F, Mattace-Raso F, Schillaci G. Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacol Res. 2017;120:34–42. - PubMed
  27. Alberti KG, Zimmet P, Shaw J; IDF Epidemiology Task Force Consensus Group. The metabolic syndrome--a new worldwide definition. Lancet. 2005;366(9491):1059–1062. - PubMed
  28. Grundy SM, Hansen B, Smith SC Jr, et al. Clinical management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Circulation. 2004;109(4):551-556. - PubMed
  29. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640-1645. - PubMed
  30. Esmailzadehha N, Ziaee A, Kazemifar AM, Ghorbani A, Oveisi S. Prevalence of metabolic syndrome in Qazvin Metabolic Diseases Study (QMDS), Iran: a comparative analysis of six definitions. Endocr Regul. 2013;47(3):111–20. - PubMed
  31. Vinluan CM, Zreikat HH, Levy JR, Cheang KI. Comparison of different metabolic syndrome definitions and risks of incident cardiovascular events in the elderly. Metabolism. 2012;61(3):302–309. - PubMed
  32. Whitworth JA; World Health Organization, International Society of Hypertension Writing Group. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens. 2003;21(11):1983-92. - PubMed
  33. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–2497. - PubMed
  34. Borodulin K & Sääksjärvi K. (edit.), FinHealth 2017 Study – Methods. Finnish Institute for Health and Welfare. Report 17/2019 Helsinki 2019. http://urn.fi/URN:ISBN: 978-952-343-449-3. Accessed 11 Dec 2020. - PubMed
  35. Tolonen H (Ed.) EHES Manual. Part B. Fieldwork procedures. 2nd edition. National Institute for Health and Welfare. Directions 2016_14. URN:ISBN:978-952-302-701-5, URL: http://urn.fi/URN:ISBN: 978-952-302-701-5. Accessed 12 Nov 2020. - PubMed
  36. Koponen P, Borodulin K, Lundqvist A, Sääksjärvi K, Koskinen S. (edit) Terveys, toimintakyky ja hyvinvointi Suomessa - FinTerveys 2017-tutkimus. Report 4/2018.Finnish Institute for Health and Welfare. http://urn.fi/URN:ISBN: 978-952-343-105-8. Accessed 11 Nov 2020. - PubMed
  37. Alkerwi A, Donneau AF, Sauvageot N, Lair ML, Scheen A, Albert A, Guillaume M. Prevalence of the metabolic syndrome in Luxembourg according to the Joint Interim Statement definition estimated from the ORISCAV-LUX study. BMC Public Health. 2011;11(1):4. - PubMed
  38. Gause-Nilsson I, Gherman S, Kumar Dey D, Kennerfalk A, Steen B. Prevalence of metabolic syndrome in an elderly Swedish population. Acta Diabetol. 2006;43(4):120–126. - PubMed
  39. Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. BMC Med. 2011;9:48. - PubMed
  40. World Health Organization/International Diabetes Federation. Definition and diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia. 2006. https://www.who.int/diabetes/publications/Definition%20and%20diagnosis%20of%20diabetes_new.pdf . Accessed 12 Dec 2020. - PubMed
  41. Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444(7121):881–887. - PubMed
  42. Boudreau DM, Malone DC, Raebel MA, Fishman PA, Nichols GA, Feldstein AC, Boscoe AN, Ben-Joseph RH, Magid DJ, Okamoto LJ. Health care utilization and costs by metabolic syndrome risk factors. Metab Syndr Relat Disord. 2009;7(4):305–14. - PubMed
  43. Guize L, Thomas F, Pannier B, Bean K, Jego B, Benetos A. All-cause mortality associated with specific combinations of the metabolic syndrome according to recent definitions. Diabetes Care. 2007;30(9):2381–7. - PubMed
  44. Tolonen H, Koponen P, Al-Kerwi A, Capkova N, Giampaoli S, Mindell J, Paalanen L, Ruiz-Castell M, Trichopoulou A, Kuulasmaa K; EHES Network. European health examination surveys - a tool for collecting objective information about the health of the population. Arch Public Health. 2018; 76:38. - PubMed
  45. American Diabetes Association. Diab Care. 2010;33 Suppl 1:S62-S69. - PubMed
  46. Moebus S, Göres L, Lösch C, Jöckel KH. Impact of time since last caloric intake on blood glucose levels. Eur J Epidemiol. 2011;26(9):719–728. - PubMed
  47. Nordestgaard BG, Langsted A, Mora S, Kolovou G, Baum H, Bruckert E, Watts GF, Sypniewska G, Wiklund O, Borén J, Chapman MJ, Cobbaert C, Descamps OS, von Eckardstein A, Kamstrup PR, Pulkki K, Kronenberg F, Remaley AT, Rifai N, Ros E, Langlois M; European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) joint consensus initiative. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points-a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J. 2016;37(25):1944–58. - PubMed
  48. Emberson JR, Whincup PH, Walker M, Thomas M, Alberti KG. Biochemical measures in a population-based study: effect of fasting duration and time of day. Ann Clin Biochem. 2002;39(5):493–501. - PubMed

Publication Types

Grant support