Display options
Share it on

Sci Rep. 2021 Dec 23;11(1):24410. doi: 10.1038/s41598-021-03567-3.

Pan-AMPK activator O304 prevents gene expression changes and remobilisation of histone marks in islets of diet-induced obese mice.

Scientific reports

Ana López-Pérez, Stefan Norlin, Pär Steneberg, Silvia Remeseiro, Helena Edlund, Andreas Hörnblad

Affiliations

  1. Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures väg 12, 90187, Umeå, Sweden.
  2. Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90187, Umeå, Sweden.
  3. Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures väg 12, 90187, Umeå, Sweden. [email protected].
  4. Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures väg 12, 90187, Umeå, Sweden. [email protected].

PMID: 34949756 DOI: 10.1038/s41598-021-03567-3

Abstract

AMP-activated protein kinase (AMPK) has an important role in cellular energy homeostasis and has emerged as a promising target for treatment of Type 2 Diabetes (T2D) due to its beneficial effects on insulin sensitivity and glucose homeostasis. O304 is a pan-AMPK activator that has been shown to improve glucose homeostasis in both mouse models of diabetes and in human T2D subjects. Here, we describe the genome-wide transcriptional profile and chromatin landscape of pancreatic islets following O304 treatment of mice fed high-fat diet (HFD). O304 largely prevented genome-wide gene expression changes associated with HFD feeding in CBA mice and these changes were associated with remodelling of active and repressive chromatin marks. In particular, the increased expression of the β-cell stress marker Aldh1a3 in islets from HFD-mice is completely abrogated following O304 treatment, which is accompanied by loss of active chromatin marks in the promoter as well as distant non-coding regions upstream of the Aldh1a3 gene. Moreover, O304 treatment restored dysfunctional glucose homeostasis as well as expression of key markers associated with β-cell function in mice with already established obesity. Our findings provide preclinical evidence that O304 is a promising therapeutic compound not only for T2D remission but also for restoration of β-cell function following remission of T2D diabetes.

© 2021. The Author(s).

References

  1. Zheng, Y., Ley, S. H. & Hu, F. B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14, 88–98 (2018). - PubMed
  2. Taylor, R. et al. Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for β cell recovery. Cell Metab. 28, 547-556.e3 (2018). - PubMed
  3. Lim, E. L. et al. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54, 2506–2514 (2011). - PubMed
  4. Glaser, B. et al. Improved beta-cell function after intensive insulin treatment in severe non-insulin-dependent diabetes. Acta Endocrinol. 118, 365–373 (1988). - PubMed
  5. Pories, W. J., Flickinger, E. G., Meelheim, D., Rij, A. M. V. & Thomas, F. T. The effectiveness of gastric bypass over gastric partition in morbid obesity. Ann. Surg. 196, 389–399 (1982). - PubMed
  6. Narkar, V. A. et al. AMPK and PPARδ agonists are exercise mimetics. Cell 134, 405–415 (2008). - PubMed
  7. Herzig, S. & Shaw, R. J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018). - PubMed
  8. Steneberg, P. et al. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight 3, e99114 (2018). - PubMed
  9. Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018). - PubMed
  10. Ahrén, B. et al. Dissociated insulinotropic sensitivity to glucose and carbachol in high-fat diet-induced insulin resistance in C57BL/6J mice. Metabolis 46, 97–106 (1997). - PubMed
  11. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). - PubMed
  12. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). - PubMed
  13. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics J. Integr. Biol. 16, 284–287 (2012). - PubMed
  14. Remeseiro, S., Cuadrado, A., Gómez-López, G., Pisano, D. G. & Losada, A. A unique role of cohesin-SA1 in gene regulation and development. EMBO J. 31, 2090–2102 (2012). - PubMed
  15. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). - PubMed
  16. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). - PubMed
  17. Zhu, L. J. et al. ChIPpeakAnno: A Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinform. 11, 237 (2010). - PubMed
  18. Zhu, L. J. Tiling arrays, methods and protocols. Methods Mol. Biol. 1067, 105–124 (2013). - PubMed
  19. Ramírez, F. et al. deepTools2: A next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016). - PubMed
  20. Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: An R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015). - PubMed
  21. Puri, S. et al. Replication confers beta cell immaturity. Nat. Commun. 9, 485–512 (2018). - PubMed
  22. Jaafar, R. et al. mTORC1-to-AMPK switching underlies β cell metabolic plasticity during maturation and diabetes. J. Clin. Investig. 6, 361–415 (2019). - PubMed
  23. Arntfield, M. E. & van der Kooy, D. β-Cell evolution: How the pancreas borrowed from the brain. BioEssays 33, 582–587 (2011). - PubMed
  24. Garcia, D. & Shaw, R. J. AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 66, 789–800 (2017). - PubMed
  25. Taylor, B. L., Liu, F.-F. & Sander, M. Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Rep. 4, 1262–1275 (2013). - PubMed
  26. Hang, Y. et al. The MafA transcription factor becomes essential to Islet β-cells soon after birth. Diabetes 63, 1994–2005 (2014). - PubMed
  27. Kim-Muller, J. Y. et al. Aldehyde dehydrogenase 1a3 defines a subset of failing pancreatic β cells in diabetic mice. Nat. Commun. 7, 12631 (2016). - PubMed
  28. Stancill, J. S. et al. Chronic β-cell depolarization impairs β-cell identity by disrupting a network of Ca(2+)-regulated genes. Diabetes 66, 2175–2187 (2017). - PubMed
  29. Cinti, F. et al. Evidence of beta-cell dedifferentiation in human type 2 diabetes. J. Clin. Endocrinol. Metab. 101, 1044–1054 (2016). - PubMed
  30. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102, 15545–15550 (2005). - PubMed
  31. Blum, B. et al. Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat. Biotechnol. 30, 261–264 (2012). - PubMed
  32. Blum, B. et al. Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway. Elife 3, e02809 (2014). - PubMed
  33. Lemaire, K., Thorrez, L. & Schuit, F. Disallowed and allowed gene expression: Two faces of mature Islet beta cells. Annu. Rev. Nutr. 36, 45–71 (2016). - PubMed
  34. Pullen, T. J., Huising, M. O. & Rutter, G. A. Analysis of purified pancreatic Islet beta and alpha cell transcriptomes reveals 11β-hydroxysteroid dehydrogenase (Hsd11b1) as a novel disallowed gene. Front. Genet. 8, 2156 (2017). - PubMed
  35. Aguayo-Mazzucato, C. et al. Acceleration of β cell aging determines diabetes and senolysis improves disease outcomes. Cell Metab. 30, 129-142.e4 (2019). - PubMed
  36. Ebrahimi, A. G. et al. Beta cell identity changes with mild hyperglycemia: Implications for function, growth, and vulnerability. Mol. Metab. https://doi.org/10.1016/j.molmet.2020.02.002 (2020). - PubMed
  37. Thorens, B., Wu, Y. J., Leahy, J. L. & Weir, G. C. The loss of GLUT2 expression by glucose-unresponsive beta cells of db/db mice is reversible and is induced by the diabetic environment. J. Clin. Investig. 90, 77–85 (1992). - PubMed
  38. Johnson, J. H. et al. Underexpression of beta cell high Km glucose transporters in noninsulin-dependent diabetes. Science 250, 546–549 (1990). - PubMed
  39. Orci, L. et al. Evidence that down-regulation of beta-cell glucose transporters in non-insulin-dependent diabetes may be the cause of diabetic hyperglycemia. Proc. Natl. Acad. Sci. 87, 9953–9957 (1990). - PubMed
  40. Guillam, M.-T. et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat. Genet. 17, 327–330 (1997). - PubMed
  41. Brixel, L. R. et al. TRPM5 regulates glucose-stimulated insulin secretion. Pflugers Arch. 460, 69–76 (2010). - PubMed
  42. Colsoul, B. et al. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5 - PubMed
  43. Hudish, L. I., Reusch, J. E. B. & Sussel, L. beta Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J. Clin. Investig. 129, 4001–4008 (2019). - PubMed
  44. Talchai, C., Xuan, S., Lin, H. V., Sussel, L. & Accili, D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150, 1223–1234 (2012). - PubMed
  45. Bensellam, M., Jonas, J.-C. & Laybutt, D. R. Mechanisms of beta-cell dedifferentiation in diabetes: Recent findings and future research directions. J. Endocrinol. 236, R109–R143 (2018). - PubMed
  46. Wortham, M. et al. Nutrient regulation of the islet epigenome controls adaptive insulin secretion. Biorxiv. https://doi.org/10.1101/742403 (2019). - PubMed
  47. Nimkulrat, S. D. et al. The Anna Karenina model of β cell maturation in development and their dedifferentiation in type 1 and type 2 diabetes. Diabetes https://doi.org/10.2337/db21-0211 (2021). - PubMed

Publication Types

Grant support