Display options
Share it on

J Exp Bot. 2021 Dec 04;72(22):7808-7825. doi: 10.1093/jxb/erab365.

Small molecule inhibitors of mammalian GSK-3β promote in vitro plant cell reprogramming and somatic embryogenesis in crop and forest species.

Journal of experimental botany

Eduardo Berenguer, Elena Carneros, Yolanda Pérez-Pérez, Carmen Gil, Ana Martínez, Pilar S Testillano

Affiliations

  1. Pollen Biotechnology of Crop Plants group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
  2. Translational Medicinal and Biological Chemistry group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.

PMID: 34338766 PMCID: PMC8664590 DOI: 10.1093/jxb/erab365

Abstract

Plant in vitro regeneration systems, such as somatic embryogenesis, are essential in breeding; they permit propagation of elite genotypes, production of doubled-haploids, and regeneration of whole plants from gene editing or transformation events. However, in many crop and forest species, somatic embryogenesis is highly inefficient. We report a new strategy to improve in vitro embryogenesis using synthetic small molecule inhibitors of mammalian glycogen synthase kinase 3β (GSK-3β), never used in plants. These inhibitors increased in vitro embryo production in three different systems and species, microspore embryogenesis of Brassica napus and Hordeum vulgare, and somatic embryogenesis of Quercus suber. TDZD-8, a representative compound of the molecules tested, inhibited GSK-3 activity in microspore cultures, and increased expression of embryogenesis genes FUS3, LEC2, and AGL15. Plant GSK-3 kinase BIN2 is a master regulator of brassinosteroid (BR) signalling. During microspore embryogenesis, BR biosynthesis and signalling genes CPD, GSK-3-BIN2, BES1, and BZR1 were up-regulated and the BAS1 catabolic gene was repressed, indicating activation of the BR pathway. TDZD-8 increased expression of BR signalling elements, mimicking BR effects. The findings support that the small molecule inhibitors promoted somatic embryogenesis by activating the BR pathway, opening up the way for new strategies using GSK-3β inhibitors that could be extended to other species.

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Keywords: Barley; brassinosteroids; cell reprogramming; cork oak; glycogen synthase kinase; microspore embryogenesis; rapeseed; small molecule inhibitors; somatic embryogenesis

References

  1. Development. 2004 Nov;131(21):5341-51 - PubMed
  2. Plant Cell Physiol. 2021 Feb 4;61(12):2097-2110 - PubMed
  3. Front Plant Sci. 2017 Jun 29;8:1161 - PubMed
  4. Annu Rev Plant Biol. 2012;63:261-82 - PubMed
  5. Int J Mol Sci. 2020 Feb 16;21(4): - PubMed
  6. Front Plant Sci. 2019 Jan 09;9:1943 - PubMed
  7. Mol Cells. 2009 Feb 28;27(2):183-90 - PubMed
  8. Protein Cell. 2017 Apr;8(4):273-283 - PubMed
  9. Chem Biol. 2009 Jun 26;16(6):594-604 - PubMed
  10. Science. 2005 Mar 11;307(5715):1634-8 - PubMed
  11. Front Plant Sci. 2019 Feb 07;10:77 - PubMed
  12. Plant Physiol. 2009 Jun;150(2):710-21 - PubMed
  13. ACS Chem Neurosci. 2012 Nov 21;3(11):963-71 - PubMed
  14. Plant Cell Rep. 2011 May;30(5):839-57 - PubMed
  15. Trends Plant Sci. 2012 Jan;17(1):39-46 - PubMed
  16. Plant Physiol. 2007 May;144(1):134-54 - PubMed
  17. Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):812-29 - PubMed
  18. J Med Chem. 2002 Mar 14;45(6):1292-9 - PubMed
  19. BMC Plant Biol. 2012 Jul 20;12:110 - PubMed
  20. Plant Cell. 2014 Jan;26(1):195-209 - PubMed
  21. Cell. 1997 Sep 5;90(5):929-38 - PubMed
  22. Exp Mol Med. 2020 Feb;52(2):213-226 - PubMed
  23. Plant Physiol. 2000 May;123(1):93-100 - PubMed
  24. Regeneration (Oxf). 2017 Dec 05;4(4):201-216 - PubMed
  25. J Med Chem. 2012 Feb 23;55(4):1645-61 - PubMed
  26. Front Plant Sci. 2019 Sep 27;10:1200 - PubMed
  27. Front Plant Sci. 2014 Jul 24;5:352 - PubMed
  28. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  29. Plant Physiol. 2008 Sep;148(1):611-9 - PubMed
  30. J Med Chem. 2018 Sep 13;61(17):7640-7656 - PubMed
  31. PLoS One. 2017 Apr 6;12(4):e0175251 - PubMed
  32. Plant Cell. 2020 Feb;32(2):295-318 - PubMed
  33. Plants (Basel). 2020 Jul 16;9(7): - PubMed
  34. Plant Physiol. 2019 Nov;181(3):855-866 - PubMed
  35. J Exp Bot. 2012 Mar;63(5):2007-24 - PubMed
  36. BMC Plant Biol. 2016 Sep 06;16(1):192 - PubMed
  37. Mol Plant. 2015 Apr;8(4):552-65 - PubMed
  38. BMC Plant Biol. 2012 Aug 02;12:127 - PubMed
  39. J Exp Bot. 2010 Jun;61(10):2779-94 - PubMed
  40. Protein Cell. 2017 May;8(5):328-348 - PubMed
  41. J Med Chem. 2011 Dec 22;54(24):8461-70 - PubMed
  42. Front Plant Sci. 2015 Jun 25;6:472 - PubMed
  43. Plant Cell Physiol. 2015 Jul;56(7):1401-17 - PubMed
  44. Plant Cell Rep. 2003 Sep;22(2):96-104 - PubMed
  45. Methods. 2001 Dec;25(4):402-8 - PubMed
  46. Front Plant Sci. 2014 May 26;5:219 - PubMed
  47. Front Plant Sci. 2019 Mar 28;10:240 - PubMed
  48. J Med Chem. 2011 Jun 23;54(12):4042-56 - PubMed
  49. Assay Drug Dev Technol. 2007 Feb;5(1):75-83 - PubMed
  50. Biochim Biophys Acta. 2015 Apr;1849(4):385-402 - PubMed
  51. Methods Mol Biol. 2018;1815:247-256 - PubMed
  52. J Exp Bot. 2019 Jun 1;70(11):2965-2978 - PubMed

Publication Types