Display options
Share it on

J Neurochem. 2021 Dec;159(5):826-839. doi: 10.1111/jnc.15524. Epub 2021 Oct 16.

Glucocerebrosidase 1 and leucine-rich repeat kinase 2 in Parkinson disease and interplay between the two genes.

Journal of neurochemistry

Chiao-Yin Lee, Elisa Menozzi, Kai-Yin Chau, Anthony H V Schapira

Affiliations

  1. Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
  2. Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA.

PMID: 34618942 DOI: 10.1111/jnc.15524

Abstract

The glucocerebrosidase 1 gene (GBA1), bi-allelic variants of which cause Gaucher disease (GD), encodes the lysosomal enzyme glucocerebrosidase (GCase) and is a risk factor for Parkinson Disease (PD). GBA1 variants are linked to a reduction in GCase activity in the brain. Variants in Leucine-Rich Repeat Kinase 2 (LRRK2), such as the gain-of-kinase-function variant G2019S, cause the most common familial form of PD. In patients without GBA1 and LRRK2 mutations, GCase and LRRK2 activity are also altered, suggesting that these two genes are implicated in all forms of PD and that they may play a broader role in PD pathogenesis. In this review, we review the proposed roles of GBA1 and LRRK2 in PD, focussing on the endolysosomal pathway. In particular, we highlight the discovery of Ras-related in brain (Rab) guanosine triphosphatases (GTPases) as LRRK2 kinase substrates and explore the links between increased LRRK2 activity and Rab protein function, lysosomal dysfunction, alpha-synuclein accumulation and GCase activity. We also discuss the discovery of RAB10 as a potential mediator of LRRK2 and GBA1 interaction in PD. Finally, we discuss the therapeutic implications of these findings, including current approaches and future perspectives related to novel drugs targeting LRRK2 and GBA1.

© 2021 International Society for Neurochemistry.

Keywords: GBA1; Gaucher disease; LRRK2; Parkinson disease; glucocerebrosidase; neurodegeneration

References

  1. Agrahari, A. K., Doss, G. P. C., Siva, R., Magesh, R., & Zayed, H. (2019). Molecular insights of the G2019S substitution in LRRK2 kinase domain associated with Parkinson's disease: A molecular dynamics simulation approach. Journal of Theoretical Biology, 469, 163-171. - PubMed
  2. Albanese, F., Mercatelli, D., Finetti, L., Lamonaca, G., Pizzi, S., Shimshek, D. R., Bernacchia, G., & Morari, M. (2021). Constitutive silencing of LRRK2 kinase activity leads to early glucocerebrosidase deregulation and late impairment of autophagy in vivo. Neurobiology of Diseases, 159, 105487. - PubMed
  3. Alcalay, R. N., Dinur, T., Quinn, T., Sakanaka, K., Levy, O., Waters, C., Fahn, S., Dorovski, T., Chung, W. K., Pauciulo, M., Nichols, W., Rana, H. Q., Balwani, M., Bier, L., Elstein, D., & Zimran, A. (2014). Comparison of Parkinson risk in Ashkenazi Jewish patients with Gaucher disease and GBA heterozygotes. JAMA Neurology, 71(6), 752-757. - PubMed
  4. Alcalay, R. N., Levy, O. A., Waters, C. C., Fahn, S., Ford, B., Kuo, S. H., Mazzoni, P., Pauciulo, M. W., Nichols, W. C., Gan-Or, Z., Rouleau, G. A., Chung, W. K., Wolf, P., Oliva, P., Keutzer, J., Marder, K., & Zhang, X. (2015). Glucocerebrosidase activity in Parkinson's disease with and without GBA mutations. Brain, 138(Pt 9), 2648-2658. - PubMed
  5. Atashrazm, F., & Dzamko, N. (2016). LRRK2 inhibitors and their potential in the treatment of Parkinson's disease: Current perspectives. Clinical Pharmacology, 8, 177-189. - PubMed
  6. Bae, E. J., Kim, D. K., Kim, C., Mante, M., Adame, A., Rockenstein, E., Ulusoy, A., Klinkenberg, M., Jeong, G. R., Bae, J. R., Lee, C., Lee, H. J., Lee, B. D., Di Monte, D. A., Masliah, E., & Lee, S. J. (2018). LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation. Nature Communications, 9(1), 3465. - PubMed
  7. Balestrino, R., & Schapira, A. H. V. (2020). Parkinson disease. European Journal of Neurology, 27(1), 27-42. - PubMed
  8. Balestrino, R., Tunesi, S., Tesei, S., Lopiano, L., Zecchinelli, A. L., & Goldwurm, S. (2020). Penetrance of Glucocerebrosidase (GBA) mutations in Parkinson's disease: A kin cohort study. Movement Disorders, 35(11), 2111-2114. - PubMed
  9. Bedford, C., Sears, C., Perez-Carrion, M., Piccoli, G., & Condliffe, S. B. (2016). LRRK2 regulates voltage-gated calcium channel function. Frontiers in Molecular Neuroscience, 9, 35. - PubMed
  10. Bendikov-Bar, I., & Horowitz, M. (2012). Gaucher disease paradigm: From ERAD to comorbidity. Human Mutation, 33(10), 1398-1407. - PubMed
  11. Biosa, A., Trancikova, A., Civiero, L., Glauser, L., Bubacco, L., Greggio, E., & Moore, D. J. (2013). GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2. Human Molecular Genetics, 22(6), 1140-1156. - PubMed
  12. Biskup, S., Moore, D. J., Rea, A., Lorenz-Deperieux, B., Coombes, C. E., Dawson, V. L., Dawson, T. M., & West, A. B. (2007). Dynamic and redundant regulation of LRRK2 and LRRK1 expression. BMC Neuroscience, 8, 102. - PubMed
  13. Braak, H., Del Tredici, K., Rüb, U., de Vos, R. A., Jansen Steur, E. N., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson's disease. Neurobiology of Aging, 24(2), 197-211. - PubMed
  14. Braun, A. C., Hendrick, J., Eisler, S. A., Schmid, S., Hausser, A., & Olayioye, M. A. (2015). The Rho-specific GAP protein DLC3 coordinates endocytic membrane trafficking. Journal of Cell Science, 128(7), 1386-1399. - PubMed
  15. Ceresa, B. P., & Bahr, S. J. (2006). rab7 activity affects epidermal growth factor: Epidermal growth factor receptor degradation by regulating endocytic trafficking from the late endosome. Journal of Biological Chemistry, 281(2), 1099-1106. - PubMed
  16. Cherra, S. J. 3rd, Steer, E., Gusdon, A. M., Kiselyov, K., & Chu, C. T. (2013). Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons. American Journal of Pathology, 182(2), 474-484. - PubMed
  17. Clark, L. N., Ross, B. M., Wang, Y., Mejia-Santana, H., Harris, J., Louis, E. D., Cote, L. J., Andrews, H., Fahn, S., Waters, C., Ford, B., Frucht, S., Ottman, R., & Marder, K. (2007). Mutations in the glucocerebrosidase gene are associated with early-onset Parkinson disease. Neurology, 69(12), 1270-1277. - PubMed
  18. Connor-Robson, N., Booth, H., Martin, J. G., Gao, B., Li, K., Doig, N., Vowles, J., Browne, C., Klinger, L., Juhasz, P., Klein, C., Cowley, S. A., Bolam, P., Hirst, W., & Wade-Martins, R. (2019). An integrated transcriptomics and proteomics analysis reveals functional endocytic dysregulation caused by mutations in LRRK2. Neurobiology of Diseases, 127, 512-526. - PubMed
  19. Cookson, M. R. (2010). The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nature Reviews Neuroscience, 11(12), 791-797. - PubMed
  20. Cullen, V., Sardi, S. P., Ng, J., Xu, Y. H., Sun, Y., Tomlinson, J. J., Kolodziej, P., Kahn, I., Saftig, P., Woulfe, J., Rochet, J. C., Glicksman, M. A., Cheng, S. H., Grabowski, G. A., Shihabuddin, L. S., & Schlossmacher, M. G. (2011). Acid beta-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter alpha-synuclein processing. Annals of Neurology, 69(6), 940-953. - PubMed
  21. Daniels, V., Vancraenenbroeck, R., Law, B. M., Greggio, E., Lobbestael, E., Gao, F., De Maeyer, M., Cookson, M. R., Harvey, K., Baekelandt, V., & Taymans, J. M. (2011). Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant. Journal of Neurochemistry, 116(2), 304-315. - PubMed
  22. Dehay, B., Bove, J., Rodriguez-Muela, N., Perier, C., Recasens, A., Boya, P., & Vila, M. (2010). Pathogenic lysosomal depletion in Parkinson's disease. Journal of Neuroscience, 30(37), 12535-12544. - PubMed
  23. Deng, X., Dzamko, N., Prescott, A., Davies, P., Liu, Q., Yang, Q., Lee, J. D., Patricelli, M. P., Nomanbhoy, T. K., Alessi, D. R., & Gray, N. S. (2011). Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2. Nature Chemical Biology, 7(4), 203-205. - PubMed
  24. Di Maio, R., Hoffman, E. K., Rocha, E. M., Keeney, M. T., Sanders, L. H., De Miranda, B. R., Zharikov, A., Van Laar, A., Stepan, A. F., Lanz, T. A., Kofler, J. K., Burton, E. A., Alessi, D. R., Hastings, T. G., & Greenamyre, J. T. (2018). LRRK2 activation in idiopathic Parkinson's disease. Science Translational Medicine, 10(451), 5429. - PubMed
  25. Do, C. B., Tung, J. Y., Dorfman, E., Kiefer, A. K., Drabant, E. M., Francke, U., Mountain, J. L., Goldman, S. M., Tanner, C. M., Langston, J. W., Wojcicki, A., & Eriksson, N. (2011). Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson's disease. PLoS Genetics, 7(6), e1002141. - PubMed
  26. Do, J., McKinney, C., Sharma, P., & Sidransky, E. (2019). Glucocerebrosidase and its relevance to Parkinson disease. Molecular Neurodegeneration, 14(1), 36. - PubMed
  27. Duran, R., Mencacci, N. E., Angeli, A. V., Shoai, M., Deas, E., Houlden, H., Mehta, A., Hughes, D., Cox, T. M., Deegan, P., Schapira, A. H., Lees, A. J., Limousin, P., Jarman, P. R., Bhatia, K. P., Wood, N. W., Hardy, J., & Foltynie, T. (2013). The glucocerobrosidase E326K variant predisposes to Parkinson's disease, but does not cause Gaucher's disease. Movement Disorders, 28(2), 232-236. - PubMed
  28. Ebrahimi-Fakhari, D., Cantuti-Castelvetri, I., Fan, Z., Rockenstein, E., Masliah, E., Hyman, B. T., McLean, P. J., & Unni, V. K. (2011). Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein. Journal of Neuroscience, 31(41), 14508-14520. - PubMed
  29. Eguchi, T., Kuwahara, T., Sakurai, M., Komori, T., Fujimoto, T., Ito, G., Yoshimura, S. I., Harada, A., Fukuda, M., Koike, M., & Iwatsubo, T. (2018). LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 115(39), E9115-E9124. - PubMed
  30. Estrada, A. A., Chan, B. K., Baker-Glenn, C., Beresford, A., Burdick, D. J., Chambers, M., Chen, H., Dominguez, S. L., Dotson, J., Drummond, J., Flagella, M., Fuji, R., Gill, A., Halladay, J., Harris, S. F., Heffron, T. P., Kleinheinz, T., Lee, D. W., Le Pichon, C. E., … Sweeney, Z. K. (2014). Discovery of highly potent, selective, and brain-penetrant aminopyrazole leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. Journal of Medicinal Chemistry, 57(3), 921-936. - PubMed
  31. Fecchio, C., Palazzi, L., & de Laureto, P. P. (2018). Alpha-synuclein and polyunsaturated fatty acids: Molecular basis of the interaction and implication in neurodegeneration. Molecules, 23(7), 1531. - PubMed
  32. Ferrazza, R., Cogo, S., Melrose, H., Bubacco, L., Greggio, E., Guella, G., Civiero, L., & Plotegher, N. (2016). LRRK2 deficiency impacts ceramide metabolism in brain. Biochemical and Biophysical Research Communications, 478(3), 1141-1146. - PubMed
  33. Flones, I. H., Fernandez-Vizarra, E., Lykouri, M., Brakedal, B., Skeie, G. O., Miletic, H., Lilleng, P. K., Alves, G., Tysnes, O. B., Haugarvoll, K., Dolle, C., Zeviani, M., & Tzoulis, C. (2018). Neuronal complex I deficiency occurs throughout the Parkinson's disease brain, but is not associated with neurodegeneration or mitochondrial DNA damage. Acta Neuropathologica, 135(3), 409-425. - PubMed
  34. Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S., Shen, J., Takio, K., & Iwatsubo, T. (2002). Alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biology, 4(2), 160-164. - PubMed
  35. Gan-Or, Z., Amshalom, I., Kilarski, L. L., Bar-Shira, A., Gana-Weisz, M., Mirelman, A., Marder, K., Bressman, S., Giladi, N., & Orr-Urtreger, A. (2015). Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurology, 84(9), 880-887. - PubMed
  36. Gan-Or, Z., Giladi, N., Rozovski, U., Shifrin, C., Rosner, S., Gurevich, T., Bar-Shira, A., & Orr-Urtreger, A. (2008). Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology, 70(24), 2277-2283. - PubMed
  37. Gardet, A., Benita, Y., Li, C., Sands, B. E., Ballester, I., Stevens, C., Korzenik, J. R., Rioux, J. D., Daly, M. J., Xavier, R. J., & Podolsky, D. K. (2010). LRRK2 is involved in the IFN-gamma response and host response to pathogens. The Journal of Immunology, 185(9), 5577-5585. - PubMed
  38. Gegg, M. E., Burke, D., Heales, S. J., Cooper, J. M., Hardy, J., Wood, N. W., & Schapira, A. H. (2012). Glucocerebrosidase deficiency in substantia nigra of Parkinson disease brains. Annals of Neurology, 72(3), 455-463. - PubMed
  39. Gegg, M. E., & Schapira, A. H. (2016). Mitochondrial dysfunction associated with glucocerebrosidase deficiency. Neurobiology of Diseases, 90, 43-50. - PubMed
  40. Gegg, M. E., Verona, G., & Schapira, A. H. V. (2020). Glucocerebrosidase deficiency promotes release of alpha-synuclein fibrils from cultured neurons. Human Molecular Genetics, 29(10), 1716-1728. - PubMed
  41. Geiger, J. T., Ding, J., Crain, B., Pletnikova, O., Letson, C., Dawson, T. M., Rosenthal, L. S., Pantelyat, A., Gibbs, J. R., Albert, M. S., Hernandez, D. G., Hillis, A. E., Stone, D. J., Singleton, A. B., C. North American Brain Expression, Hardy, J. A., Troncoso, J. C., & Scholz, S. W. (2016). Next-generation sequencing reveals substantial genetic contribution to dementia with Lewy bodies. Neurobiology of Diseases, 94, 55-62. - PubMed
  42. Goldwurm, S., Zini, M., Mariani, L., Tesei, S., Miceli, R., Sironi, F., Clementi, M., Bonifati, V., & Pezzoli, G. (2007). Evaluation of LRRK2 G2019S penetrance: Relevance for genetic counseling in Parkinson disease. Neurology, 68(14), 1141-1143. - PubMed
  43. Gómez-Suaga, P., Rivero-Ríos, P., Fdez, E., Blanca Ramírez, M., Ferrer, I., Aiastui, A., López De Munain, A., & Hilfiker, S. (2014). LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity. Human Molecular Genetics, 23(25), 6779-6796. - PubMed
  44. González-Fernández, M. C., Lezcano, E., Ross, O. A., Gómez-Esteban, J. C., Gómez-Busto, F., Velasco, F., Alvarez-Alvarez, M., Rodríguez-Martínez, M. B., Ciordia, R., Zarranz, J. J., Farrer, M. J., Mata, I. F., & de Pancorbo, M. M. (2007). Lrrk2-associated Parkinsonism is a major cause of disease in Northern Spain. Parkinsonism & Related Disorders, 13(8), 509-515. - PubMed
  45. Grabowski, G. A., & Horowitz, M. (1997). Gaucher's disease: molecular, genetic and enzymological aspects. Baillieres Clinical Haematology, 10(4), 635-656. - PubMed
  46. Greggio, E., & Cookson, M. R. (2009). Leucine-rich repeat kinase 2 mutations and Parkinson's disease: Three questions. ASN Neuro, 1(1), AN20090007. https://doi.org/10.1042/AN20090007 - PubMed
  47. Grunewald, A., Kumar, K. R., & Sue, C. M. (2019). New insights into the complex role of mitochondria in Parkinson's disease. Progress in Neurobiology, 177, 73-93. - PubMed
  48. Guaitoli, G., Raimondi, F., Gilsbach, B. K., Gómez-Llorente, Y., Deyaert, E., Renzi, F., Li, X., Schaffner, A., Jagtap, P. K., Boldt, K., von Zweydorf, F., Gotthardt, K., Lorimer, D. D., Yue, Z., Burgin, A., Janjic, N., Sattler, M., Versées, W., Ueffing, M., … Gloeckner, C. J. (2016). Structural model of the dimeric Parkinson's protein LRRK2 reveals a compact architecture involving distant interdomain contacts. Proceedings of the National Academy of Sciences of the United States of America, 113(30), E4357-4366. - PubMed
  49. Guerra, F., & Bucci, C. (2016). Multiple roles of the small GTPase Rab7. Cells, 5(3), 34. https://doi.org/10.3390/cells5030034. - PubMed
  50. Gundner, A. L., Duran-Pacheco, G., Zimmermann, S., Ruf, I., Moors, T., Baumann, K., Jagasia, R., van de Berg, W. D. J., & Kremer, T. (2019). Path mediation analysis reveals GBA impacts Lewy body disease status by increasing alpha-synuclein levels. Neurobiology of Diseases, 121, 205-213. - PubMed
  51. Gupta, N., Oppenheim, I. M., Kauvar, E. F., Tayebi, N., & Sidransky, E. (2011). Type 2 Gaucher disease: Phenotypic variation and genotypic heterogeneity. Blood Cells, Molecules, & Diseases, 46(1), 75-84. - PubMed
  52. Haugarvoll, K., Rademakers, R., Kachergus, J. M., Nuytemans, K., Ross, O. A., Gibson, J. M., Tan, E. K., Gaig, C., Tolosa, E., Goldwurm, S., Guidi, M., Riboldazzi, G., Brown, L., Walter, U., Benecke, R., Berg, D., Gasser, T., Theuns, J., Pals, P., … Wszolek, Z. K. (2008). Lrrk2 R1441C Parkinsonism is clinically similar to sporadic Parkinson disease. Neurology, 70(16 Pt 2), 1456-1460. - PubMed
  53. Healy, D. G., Falchi, M., O'Sullivan, S. S., Bonifati, V., Durr, A., Bressman, S., Brice, A., Aasly, J., Zabetian, C. P., Goldwurm, S., Ferreira, J. J., Tolosa, E., Kay, D. M., Klein, C., Williams, D. R., Marras, C., Lang, A. E., Wszolek, Z. K., Berciano, J., … L. C. International (2008). Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: A case-control study. The Lancet Neurology, 7(7), 583-590. - PubMed
  54. Henderson, M. X., Sedor, S., McGeary, I., Cornblath, E. J., Peng, C., Riddle, D. M., Li, H. L., Zhang, B., Brown, H. J., Olufemi, M. F., Bassett, D. S., Trojanowski, J. Q., & Lee, V. M. Y. (2020). Glucocerebrosidase activity modulates neuronal susceptibility to pathological alpha-synuclein insult. Neuron, 105(5), 822-836, e827. - PubMed
  55. Henderson, M. X., Sengupta, M., Trojanowski, J. Q., & Lee, V. M. Y. (2019). Alzheimer's disease tau is a prominent pathology in LRRK2 Parkinson's disease. Acta Neuropathologica Communications, 7(1), 183. - PubMed
  56. Henry, A. G., Aghamohammadzadeh, S., Samaroo, H., Chen, Y., Mou, K., Needle, E., & Hirst, W. D. (2015). Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. Human Molecular Genetics, 24(21), 6013-6028. - PubMed
  57. Ho, D. H., Jang, J., Joe, E. H., Son, I., Seo, H., & Seol, W. (2016). G2385R and I2020T mutations increase LRRK2 GTPase activity. BioMed Research International, 2016, 7917128. - PubMed
  58. Horowitz, M., Pasmanik-Chor, M., Ron, I., & Kolodny, E. H. (2011). The enigma of the E326K mutation in acid beta-glucocerebrosidase. Molecular Genetics and Metabolism, 104(1-2), 35-38. - PubMed
  59. Horowitz, M., Wilder, S., Horowitz, Z., Reiner, O., Gelbart, T., & Beutler, E. (1989). The human glucocerebrosidase gene and pseudogene: Structure and evolution. Genomics, 4(1), 87-96. - PubMed
  60. Hruska, K. S., LaMarca, M. E., Scott, C. R., & Sidransky, E. (2008). Gaucher disease: Mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Human Mutation, 29(5), 567-583. - PubMed
  61. Ito, G., Okai, T., Fujino, G., Takeda, K., Ichijo, H., Katada, T., & Iwatsubo, T. (2007). GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry, 46(5), 1380-1388. - PubMed
  62. Jäger, S., Bucci, C., Tanida, I., Ueno, T., Kominami, E., Saftig, P., & Eskelinen, E. L. (2004). Role for Rab7 in maturation of late autophagic vacuoles. Journal of Cell Science, 117(Pt 20), 4837-4848. - PubMed
  63. Jaleel, M., Nichols, R. J., Deak, M., Campbell, D. G., Gillardon, F., Knebel, A., & Alessi, D. R. (2007). LRRK2 phosphorylates moesin at threonine-558: Characterization of how Parkinson's disease mutants affect kinase activity. The Biochemical Journal, 405(2), 307-317. - PubMed
  64. Kalia, L. V., Lang, A. E., Hazrati, L. N., Fujioka, S., Wszolek, Z. K., Dickson, D. W., Ross, O. A., Van Deerlin, V. M., Trojanowski, J. Q., Hurtig, H. I., Alcalay, R. N., Marder, K. S., Clark, L. N., Gaig, C., Tolosa, E., Ruiz-Martinez, J., Marti-Masso, J. F., Ferrer, I., Lopez de Munain, A., … Marras, C. (2015). Clinical correlations with Lewy body pathology in LRRK2-related Parkinson disease. JAMA Neurology, 72(1), 100-105. - PubMed
  65. Kalogeropulou, A. F., Freemantle, J. B., Lis, P., Vides, E. G., Polinski, N. K., & Alessi, D. R. (2020). Endogenous Rab29 does not impact basal or stimulated LRRK2 pathway activity. The Biochemical Journal, 477(22), 4397-4423. https://doi.org/10.1042/BCJ20200458. - PubMed
  66. Kasten, M., & Klein, C. (2013). The many faces of alpha-synuclein mutations. Movement Disorders, 28(6), 697-701. - PubMed
  67. Kelly, K., Wang, S., Boddu, R., Liu, Z., Moukha-Chafiq, O., Augelli-Szafran, C., & West, A. B. (2018). The G2019S mutation in LRRK2 imparts resiliency to kinase inhibition. Experimental Neurology, 309, 1-13. - PubMed
  68. Kestenbaum, M., & Alcalay, R. N. (2017). Clinical features of LRRK2 carriers with Parkinson's disease. Advances in Neurobiology, 14, 31-48. - PubMed
  69. Kim, S., Wong, Y. C., Gao, F., & Krainc, D. (2021). Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson's disease. Nature Communications, 12(1), 1807. - PubMed
  70. Kim, S., Yun, S. P., Lee, S., Umanah, G. E., Bandaru, V. V. R., Yin, X., Rhee, P., Karuppagounder, S. S., Kwon, S. H., Lee, H., Mao, X., Kim, D., Pandey, A., Lee, G., Dawson, V. L., Dawson, T. M., & Ko, H. S. (2018). GBA1 deficiency negatively affects physiological alpha-synuclein tetramers and related multimers. Proceedings of the National Academy of Sciences of the United States of America, 115(4), 798-803. - PubMed
  71. Klein, A. D., & Mazzulli, J. R. (2018). Is Parkinson's disease a lysosomal disorder? Brain, 141(8), 2255-2262. https://doi.org/10.1093/brain/awy147. - PubMed
  72. Kouranti, I., Sachse, M., Arouche, N., Goud, B., & Echard, A. (2006). Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Current Biology, 16(17), 1719-1725. - PubMed
  73. Kuwahara, T., Funakawa, K., Komori, T., Sakurai, M., Yoshii, G., Eguchi, T., Fukuda, M., & Iwatsubo, T. (2020). Roles of lysosomotropic agents on LRRK2 activation and Rab10 phosphorylation. Neurobiology of Diseases, 145, 105081. - PubMed
  74. Kuwahara, T., Inoue, K., D'Agati, V. D., Fujimoto, T., Eguchi, T., Saha, S., Wolozin, B., Iwatsubo, T., & Abeliovich, A. (2016). LRRK2 and RAB7L1 coordinately regulate axonal morphology and lysosome integrity in diverse cellular contexts. Scientific Reports, 6, 29945. - PubMed
  75. Lee, J. H., Han, J. H., Kim, H., Park, S. M., Joe, E. H., & Jou, I. (2019). Parkinson's disease-associated LRRK2-G2019S mutant acts through regulation of SERCA activity to control ER stress in astrocytes. Acta Neuropathologica Communications, 7(1), 68. - PubMed
  76. Li, H., Ham, A., Ma, T. C., Kuo, S. H., Kanter, E., Kim, D., Ko, H. S., Quan, Y., Sardi, S. P., Li, A., Arancio, O., Kang, U. J., Sulzer, D., & Tang, G. (2019). Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations. Autophagy, 15(1), 113-130. - PubMed
  77. Li, X., Tan, Y. C., Poulose, S., Olanow, C. W., Huang, X. Y., & Yue, Z. (2007). Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants. Journal of Neurochemistry, 103(1), 238-247. - PubMed
  78. Liao, J., Wu, C. X., Burlak, C., Zhang, S., Sahm, H., Wang, M., Zhang, Z. Y., Vogel, K. W., Federici, M., Riddle, S. M., Nichols, R. J., Liu, D., Cookson, M. R., Stone, T. A., & Hoang, Q. Q. (2014). Parkinson disease-associated mutation R1441H in LRRK2 prolongs the "active state" of its GTPase domain. Proceedings of the National Academy of Sciences of the United States of America, 111(11), 4055-4060. - PubMed
  79. Lill, C. M., Roehr, J. T., McQueen, M. B., Kavvoura, F. K., Bagade, S., Schjeide, B. M., Schjeide, L. M., Meissner, E., Zauft, U., Allen, N. C., Liu, T., Schilling, M., Anderson, K. J., Beecham, G., Berg, D., Biernacka, J. M., Brice, A., DeStefano, A. L., & Do, C. B. … Bertram, L. (2012). Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: The PDGene database. PLoS Genetics, 8(3), e1002548. - PubMed
  80. Lis, P., Burel, S., Steger, M., Mann, M., Brown, F., Diez, F., Tonelli, F., Holton, J. L., Ho, P. W., Ho, S. L., Chou, M. Y., Polinski, N. K., Martinez, T. N., Davies, P., & Alessi, D. R. (2018). Development of phospho-specific Rab protein antibodies to monitor in vivo activity of the LRRK2 Parkinson's disease kinase. The Biochemical Journal, 475(1), 1-22. - PubMed
  81. Liu, Z., Bryant, N., Kumaran, R., Beilina, A., Abeliovich, A., Cookson, M. R., & West, A. B. (2018). LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. Human Molecular Genetics, 27(2), 385-395. - PubMed
  82. Macdonald, R., Barnes, K., Hastings, C., & Mortiboys, H. (2018). Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: Can mitochondria be targeted therapeutically? Biochemical Society Transactions, 46(4), 891-909. https://doi.org/10.1042/BST20170501. - PubMed
  83. MacLeod, D. A., Rhinn, H., Kuwahara, T., Zolin, A., Di Paolo, G., McCabe, B. D., Marder, K. S., Honig, L. S., Clark, L. N., Small, S. A., & Abeliovich, A. (2013). RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron, 77(3), 425-439. - PubMed
  84. Madureira, M., Connor-Robson, N., & Wade-Martins, R. (2020). LRRK2: Autophagy and lysosomal activity. Frontiers in Neuroscience, 14, 498. - PubMed
  85. Maekawa, T., Kubo, M., Yokoyama, I., Ohta, E., & Obata, F. (2010). Age-dependent and cell-population-restricted LRRK2 expression in normal mouse spleen. Biochemical and Biophysical Research Communications, 392(3), 431-435. - PubMed
  86. Manzoni, C. (2017). The LRRK2-macroautophagy axis and its relevance to Parkinson's disease. Biochemical Society Transactions, 45(1), 155-162. - PubMed
  87. Marder, K., Wang, Y., Alcalay, R. N., Mejia-Santana, H., Tang, M. X., Lee, A., Raymond, D., Mirelman, A., Saunders-Pullman, R., Clark, L., Ozelius, L., Orr-Urtreger, A., Giladi, N., & Bressman, S. and L. A. J. Consortium (2015). Age-specific penetrance of LRRK2 G2019S in the Michael J. Fox Ashkenazi Jewish LRRK2 Consortium. Neurology, 85(1), 89-95. - PubMed
  88. Martí-Massó, J. F., Ruiz-Martínez, J., Bolaño, M. J., Ruiz, I., Gorostidi, A., Moreno, F., Ferrer, I., & López de Munain, A. (2009). Neuropathology of Parkinson's disease with the R1441G mutation in LRRK2. Movement Disorders, 24(13), 1998-2001. - PubMed
  89. Mazza, M. C., Nguyen, V., Beilina, A., Ding, J., & Cookson, M. R. (2020). Combined knockout of Lrrk2 and Rab29 does not result in behavioral abnormalities in vivo. Journal of Parkinson's Disease, 11(2), 569-584. - PubMed
  90. Mazzulli, J. R., Xu, Y. H., Sun, Y., Knight, A. L., McLean, P. J., Caldwell, G. A., Sidransky, E., Grabowski, G. A., & Krainc, D. (2011). Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell, 146(1), 37-52. - PubMed
  91. McNeill, A., Duran, R., Hughes, D. A., Mehta, A., & Schapira, A. H. (2012). A clinical and family history study of Parkinson's disease in heterozygous glucocerebrosidase mutation carriers. Journal of Neurology, Neurosurgery and Psychiatry, 83(8), 853-854. - PubMed
  92. Menozzi, E., & Schapira, A. H. V. (2020). Enhancing the activity of glucocerebrosidase as a treatment for parkinson disease. CNS Drugs, 34(9), 915-923. https://doi.org/10.1007/s40263-020-00746-0. - PubMed
  93. Migdalska-Richards, A., Daly, L., Bezard, E., & Schapira, A. H. (2016). Ambroxol effects in glucocerebrosidase and alpha-synuclein transgenic mice. Annals of Neurology, 80(5), 766-775. - PubMed
  94. Migdalska-Richards, A., Ko, W. K. D., Li, Q., Bezard, E., & Schapira, A. H. V. (2017). Oral ambroxol increases brain glucocerebrosidase activity in a nonhuman primate. Synapse (New York, N. Y.), 71(7), e21967. https://doi.org/10.1002/syn.21967. - PubMed
  95. Mills, R. D., Mulhern, T. D., Cheng, H. C., & Culvenor, J. G. (2012). Analysis of LRRK2 accessory repeat domains: Prediction of repeat length, number and sites of Parkinson's disease mutations. Biochemical Society Transactions, 40(5), 1086-1089. - PubMed
  96. Mitsui, J., Matsukawa, T., Sasaki, H., Yabe, I., Matsushima, M., Durr, A., Brice, A., Takashima, H., Kikuchi, A., Aoki, M., Ishiura, H., Yasuda, T., Date, H., Ahsan, B., Iwata, A., Goto, J., Ichikawa, Y., Nakahara, Y., Momose, Y., … Tsuji, S. (2015). Variants associated with Gaucher disease in multiple system atrophy. Annals of Clinical and Translational Neurology, 2(4), 417-426. - PubMed
  97. Moren, C., Juarez-Flores, D. L., Chau, K. Y., Gegg, M., Garrabou, G., Gonzalez-Casacuberta, I., Guitart-Mampel, M., Tolosa, E., Marti, M. J., Cardellach, F., & Schapira, A. H. V. (2019). GBA mutation promotes early mitochondrial dysfunction in 3D neurosphere models. Aging (Albany NY), 11(22), 10338-10355. - PubMed
  98. Mullin, S., Hughes, D., Mehta, A., & Schapira, A. H. V. (2019). Neurological effects of glucocerebrosidase gene mutations. European Journal of Neurology, 26(3), 388-e329. - PubMed
  99. Mullin, S., Smith, L., Lee, K., D'Souza, G., Woodgate, P., Elflein, J., Hallqvist, J., Toffoli, M., Streeter, A., Hosking, J., Heywood, W. E., Khengar, R., Campbell, P., Hehir, J., Cable, S., Mills, K., Zetterberg, H., Limousin, P., Libri, V., … Schapira, A. H. V. (2020). Ambroxol for the treatment of patients with Parkinson disease with and without glucocerebrosidase gene mutations: A nonrandomized, Noncontrolled Trial. JAMA Neurology, 77(4), 427-434. - PubMed
  100. Murphy, D. D., Rueter, S. M., Trojanowski, J. Q., & Lee, V. M. (2000). Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. Journal of Neuroscience, 20(9), 3214-3220. - PubMed
  101. Murphy, K. E., Gysbers, A. M., Abbott, S. K., Tayebi, N., Kim, W. S., Sidransky, E., Cooper, A., Garner, B., & Halliday, G. M. (2014). Reduced glucocerebrosidase is associated with increased alpha-synuclein in sporadic Parkinson's disease. Brain, 137(Pt 3), 834-848. - PubMed
  102. Nelson, M. P., Tse, T. E., O'Quinn, D. B., Percival, S. M., Jaimes, E. A., Warnock, D. G., & Shacka, J. J. (2014). Autophagy-lysosome pathway associated neuropathology and axonal degeneration in the brains of alpha-galactosidase A-deficient mice. Acta Neuropathologica Communications, 2, 20. - PubMed
  103. Obergasteiger, J., Frapporti, G., Lamonaca, G., Pizzi, S., Picard, A., Lavdas, A. A., Pischedda, F., Piccoli, G., Hilfiker, S., Lobbestael, E., Baekelandt, V., Hicks, A. A., Corti, C., Pramstaller, P. P., & Volta, M. (2020). Kinase inhibition of G2019S-LRRK2 enhances autolysosome formation and function to reduce endogenous alpha-synuclein intracellular inclusions. Cell Death Discovery, 6(1). https://doi.org/10.1038/s41420-020-0279-y. - PubMed
  104. Omer, N., Giladi, N., Gurevich, T., Bar-Shira, A., Gana-Weisz, M., Goldstein, O., Kestenbaum, M., Cedarbaum, J. M., Orr-Urtreger, A., Mirelman, A., & Thaler, A. (2020). A possible modifying effect of the G2019S mutation in the LRRK2 gene on GBA Parkinson's disease. Movement Disorders, 35(7), 1249-1253. - PubMed
  105. Ortega, R. A., Wang, C., Raymond, D., Bryant, N., Scherzer, C. R., Thaler, A., Alcalay, R. N., West, A. B., Mirelman, A., Kuras, Y., Marder, K. S., Giladi, N., Ozelius, L. J., Bressman, S. B., & Saunders-Pullman, R. (2021). Association of dual LRRK2 G2019S and GBA variations with Parkinson disease progression. JAMA Netw Open, 4(4), e215845. - PubMed
  106. Papkovskaia, T. D., Chau, K. Y., Inesta-Vaquera, F., Papkovsky, D. B., Healy, D. G., Nishio, K., Staddon, J., Duchen, M. R., Hardy, J., Schapira, A. H., & Cooper, J. M. (2012). G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization. Human Molecular Genetics, 21(19), 4201-4213. - PubMed
  107. Parkkinen, L., Neumann, J., O'Sullivan, S. S., Holton, J. L., Revesz, T., Hardy, J., & Lees, A. J. (2011). Glucocerebrosidase mutations do not cause increased Lewy body pathology in Parkinson's disease. Molecular Genetics and Metabolism, 103(4), 410-412. - PubMed
  108. Plotegher, N., Perocheau, D., Ferrazza, R., Massaro, G., Bhosale, G., Zambon, F., Rahim, A. A., Guella, G., Waddington, S. N., Szabadkai, G., & Duchen, M. R. (2020). Impaired cellular bioenergetics caused by GBA1 depletion sensitizes neurons to calcium overload. Cell Death and Differentiation, 27(5), 1588-1603. - PubMed
  109. Poteryaev, D., Datta, S., Ackema, K., Zerial, M., & Spang, A. (2010). Identification of the switch in early-to-late endosome transition. Cell, 141(3), 497-508. - PubMed
  110. Purlyte, E., Dhekne, H. S., Sarhan, A. R., Gomez, R., Lis, P., Wightman, M., Martinez, T. N., Tonelli, F., Pfeffer, S. R., & Alessi, D. R. (2018). Rab29 activation of the Parkinson's disease-associated LRRK2 kinase. EMBO Journal, 37(1), 1-18. - PubMed
  111. Reczek, D., Schwake, M., Schröder, J., Hughes, H., Blanz, J., Jin, X., Brondyk, W., Van Patten, S., Edmunds, T., & Saftig, P. (2007). LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell, 131(4), 770-783. - PubMed
  112. Reeve, A., Simcox, E., & Turnbull, D. (2014). Ageing and Parkinson's disease: Why is advancing age the biggest risk factor? Ageing Research Reviews, 14(100), 19-30. https://doi.org/10.1016/j.arr.2014.01.004. - PubMed
  113. Rivero-Ríos, P., Madero-Pérez, J., Fernández, B., & Hilfiker, S. (2016). Targeting the autophagy/lysosomal degradation pathway in Parkinson's disease. Current Neuropharmacology, 14(3), 238-249. - PubMed
  114. Rivero-Ríos, P., Romo-Lozano, M., Fasiczka, R., Naaldijk, Y., & Hilfiker, S. (2020). LRRK2-related Parkinson's disease due to altered endolysosomal biology with variable lewy body pathology: A hypothesis. Frontiers in Neuroscience, 14, 556. - PubMed
  115. Rivero-Ríos, P., Romo-Lozano, M., Madero-Pérez, J., Thomas, A. P., Biosa, A., Greggio, E., & Hilfiker, S. (2019). The G2019S variant of leucine-rich repeat kinase 2 (LRRK2) alters endolysosomal trafficking by impairing the function of the GTPase RAB8A. Journal of Biological Chemistry, 294(13), 4738-4758. - PubMed
  116. Robak, L. A., Jansen, I. E., van Rooij, J., Uitterlinden, A. G., Kraaij, R., Jankovic, J., Heutink, P., & Shulman, J. M. (2017). Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain, 140(12), 3191-3203. - PubMed
  117. Rojas, R., van Vlijmen, T., Mardones, G. A., Prabhu, Y., Rojas, A. L., Mohammed, S., Heck, A. J., Raposo, G., van der Sluijs, P., & Bonifacino, J. S. (2008). Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. Journal of Cell Biology, 183(3), 513-526. - PubMed
  118. Ron, I., & Horowitz, M. (2005). ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Human Molecular Genetics, 14(16), 2387-2398. - PubMed
  119. Roosen, D. A., & Cookson, M. R. (2016). LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Molecular Neurodegeneration, 11(1), 73. - PubMed
  120. Saez-Atienzar, S., Bonet-Ponce, L., Blesa, J. R., Romero, F. J., Murphy, M. P., Jordan, J., & Galindo, M. F. (2014). The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling. Cell Death & Disease, 5, e1368. - PubMed
  121. Sanyal, A., DeAndrade, M. P., Novis, H. S., Lin, S., Chang, J., Lengacher, N., Tomlinson, J. J., Tansey, M. G., & LaVoie, M. J. (2020). Lysosome and inflammatory defects in GBA1-mutant astrocytes are normalized by LRRK2 inhibition. Movement Disorders, 35(5), 760-773. - PubMed
  122. Saunders-Pullman, R., Mirelman, A., Alcalay, R. N., Wang, C., Ortega, R. A., Raymond, D., Mejia-Santana, H., Orbe-Reilly, M., Johannes, B. A., Thaler, A., Ozelius, L., Orr-Urtreger, A., Marder, K. S., Giladi, N., & Bressman, S. B. (2018). Progression in the LRRK2-asssociated Parkinson disease population. JAMA Neurology, 75(3), 312-319. - PubMed
  123. Sawkar, A. R., Cheng, W. C., Beutler, E., Wong, C. H., Balch, W. E., & Kelly, J. W. (2002). Chemical chaperones increase the cellular activity of N370S beta -glucosidase: A therapeutic strategy for Gaucher disease. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15428-15433. - PubMed
  124. Schapansky, J., Nardozzi, J. D., Felizia, F., & LaVoie, M. J. (2014). Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Human Molecular Genetics, 23(16), 4201-4214. - PubMed
  125. Schapira, A. H. (2013). Calcium dysregulation in Parkinson's disease. Brain, 136(Pt 7), 2015-2016. - PubMed
  126. Schapira, A. H. V., Chaudhuri, K. R., & Jenner, P. (2017). Non-motor features of Parkinson disease. Nature Reviews Neuroscience, 18(8), 509. - PubMed
  127. Schapira, A. H., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., & Marsden, C. D. (1990). Mitochondrial complex I deficiency in Parkinson's disease. Journal of Neurochemistry, 54(3), 823-827. - PubMed
  128. Schapira, A. H., Cooper, J. M., Dexter, D., Jenner, P., Clark, J. B., & Marsden, C. D. (1989). Mitochondrial complex I deficiency in Parkinson's disease. Lancet, 1(8649), 1269. - PubMed
  129. Schapira, A. H., & Gegg, M. E. (2013). Glucocerebrosidase in the pathogenesis and treatment of Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3214-3215. - PubMed
  130. Schondorf, D. C., Aureli, M., McAllister, F. E., Hindley, C. J., Mayer, F., Schmid, B., Sardi, S. P., Valsecchi, M., Hoffmann, S., Schwarz, L. K., Hedrich, U., Berg, D., Shihabuddin, L. S., Hu, J., Pruszak, J., Gygi, S. P., Sonnino, S., Gasser, T., & Deleidi, M. (2014). iPSC-derived neurons from GBA1-associated Parkinson's disease patients show autophagic defects and impaired calcium homeostasis. Nature Communications, 5, 4028. - PubMed
  131. Shahmoradian, S. H., Lewis, A. J., Genoud, C., Hench, J., Moors, T. E., Navarro, P. P., Castano-Diez, D., Schweighauser, G., Graff-Meyer, A., Goldie, K. N., Sutterlin, R., Huisman, E., Ingrassia, A., Gier, Y., Rozemuller, A. J. M., Wang, J., Paepe, A., Erny, J., Staempfli, A., … Lauer, M. E. (2019). Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nature Neuroscience, 22(7), 1099-1109. - PubMed
  132. Sidransky, E., Nalls, M. A., Aasly, J. O., Aharon-Peretz, J., Annesi, G., Barbosa, E. R., Bar-Shira, A., Berg, D., Bras, J., Brice, A., Chen, C. M., Clark, L. N., Condroyer, C., De Marco, E. V., Durr, A., Eblan, M. J., Fahn, S., Farrer, M. J., Fung, H. C., … Ziegler, S. G. (2009). Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. New England Journal of Medicine, 361(17), 1651-1661. - PubMed
  133. Simón-Sánchez, J., Martí-Massó, J. F., Sánchez-Mut, J. V., Paisán-Ruiz, C., Martínez-Gil, A., Ruiz-Martínez, J., Sáenz, A., Singleton, A. B., López de Munain, A., & Pérez-Tur, J. (2006). Parkinson's disease due to the R1441G mutation in Dardarin: A founder effect in the Basques. Movement Disorders, 21(11), 1954-1959. - PubMed
  134. Sklerov, M., Kang, U. J., Liong, C., Clark, L., Marder, K., Pauciulo, M., Nichols, W. C., Chung, W. K., Honig, L. S., Cortes, E., Vonsattel, J. P., & Alcalay, R. N. (2017). Frequency of GBA variants in autopsy-proven multiple system atrophy. Movement Disorders Clinical Practice, 4(4), 574-581. - PubMed
  135. Smith, B. R., Santos, M. B., Marshall, M. S., Cantuti-Castelvetri, L., Lopez-Rosas, A., Li, G., van Breemen, R., Claycomb, K. I., Gallea, J. I., Celej, M. S., Crocker, S. J., Givogri, M. I., & Bongarzone, E. R. (2014). Neuronal inclusions of α-synuclein contribute to the pathogenesis of Krabbe disease. The Journal of Pathology, 232(5), 509-521. - PubMed
  136. Sorge, J., Gross, E., West, C., & Beutler, E. (1990). High level transcription of the glucocerebrosidase pseudogene in normal subjects and patients with Gaucher disease. Journal of Clinical Investigation, 86(4), 1137-1141. - PubMed
  137. Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature, 388(6645), 839-840. - PubMed
  138. Srulijes, K., Hauser, A. K., Guella, I., Asselta, R., Brockmann, K., Schulte, C., Solda, G., Cilia, R., Maetzler, W., Schols, L., Wenning, G. K., Poewe, W., Barone, P., Wullner, U., Oertel, W., Berg, D., Goldwurm, S., & Gasser, T. (2013). No association of GBA mutations and multiple system atrophy. European Journal of Neurology, 20(4), e61-62. - PubMed
  139. Stefanis, L., Emmanouilidou, E., Pantazopoulou, M., Kirik, D., Vekrellis, K., & Tofaris, G. K. (2019). How is alpha-synuclein cleared from the cell? Journal of Neurochemistry, 150(5), 577-590. https://doi.org/10.1111/jnc.14704. - PubMed
  140. Steger, M., Diez, F., Dhekne, H. S., Lis, P., Nirujogi, R. S., Karayel, O., Tonelli, F., Martinez, T. N., Lorentzen, E., Pfeffer, S. R., Alessi, D. R., & Mann, M. (2017). Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. Elife, 6. - PubMed
  141. Steger, M., Tonelli, F., Ito, G., Davies, P., Trost, M., Vetter, M., Wachter, S., Lorentzen, E., Duddy, G., Wilson, S., Baptista, M. A., Fiske, B. K., Fell, M. J., Morrow, J. A., Reith, A. D., Alessi, D. R., & Mann, M. (2016). Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. Elife, 5. - PubMed
  142. Stirnemann, J., Belmatoug, N., Camou, F., Serratrice, C., Froissart, R., Caillaud, C., Levade, T., Astudillo, L., Serratrice, J., Brassier, A., Rose, C., Billette de Villemeur, T., & Berger, M. G. (2017). A review of gaucher disease pathophysiology, clinical presentation and treatments. International Journal of Molecular Sciences, 18(2), 441. https://doi.org/10.3390/ijms18020441. - PubMed
  143. Stoker, T. B., Camacho, M., Winder-Rhodes, S., Liu, G., Scherzer, C. R., Foltynie, T., Evans, J., Breen, D. P., Barker, R. A., & Williams-Gray, C. H. (2020). Impact of GBA1 variants on long-term clinical progression and mortality in incident Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 91(7), 695-702. - PubMed
  144. Takanashi, M., Funayama, M., Matsuura, E., Yoshino, H., Li, Y., Tsuyama, S., Takashima, H., Nishioka, K., & Hattori, N. (2018). Isolated nigral degeneration without pathological protein aggregation in autopsied brains with LRRK2 p. R1441H homozygous and heterozygous mutations. Acta Neuropathologica Communications, 6(1), 105. - PubMed
  145. Tan, M. M. X., Malek, N., Lawton, M. A., Hubbard, L., Pittman, A. M., Joseph, T., Hehir, J., Swallow, D. M. A., Grosset, K. A., Marrinan, S. L., Bajaj, N., Barker, R. A., Burn, D. J., Bresner, C., Foltynie, T., Hardy, J., Wood, N., Ben-Shlomo, Y., Grosset, D. G., … Morris, H. R. (2019). Genetic analysis of Mendelian mutations in a large UK population-based Parkinson's disease study. Brain, 142(9), 2828-2844. - PubMed
  146. Taymans, J. M., Vancraenenbroeck, R., Ollikainen, P., Beilina, A., Lobbestael, E., De Maeyer, M., Baekelandt, V., & Cookson, M. R. (2011). LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding. PLoS One, 6(8), e23207. - PubMed
  147. Thirumal Kumar, D., Eldous, H. G., Mahgoub, Z. A., George Priya Doss, C., & Zayed, H. (2018). Computational modelling approaches as a potential platform to understand the molecular genetics association between Parkinson's and Gaucher diseases. Metabolic Brain Disease, 33(6), 1835-1847. - PubMed
  148. Thirumal Kumar, D., Iyer, S., Christy, J. P., Siva, R., Tayubi, I. A., George Priya Doss, C., & Zayed, H. (2019). A comparative computational approach toward pharmacological chaperones (NN-DNJ and ambroxol) on N370S and L444P mutations causing Gaucher's disease. Acta Neuropathologica Communications, 114, 315-339. - PubMed
  149. Tucci, A., Nalls, M. A., Houlden, H., Revesz, T., Singleton, A. B., Wood, N. W., Hardy, J., & Paisan-Ruiz, C. (2010). Genetic variability at the PARK16 locus. European Journal of Human Genetics, 18(12), 1356-1359. - PubMed
  150. Tysnes, O. B., & Storstein, A. (2017). Epidemiology of Parkinson's disease. Journal of Neural Transmission (Vienna), 124(8), 901-905. - PubMed
  151. Varadi, C. (2020). Clinical features of Parkinson's disease: The evolution of critical symptoms. Biology (Basel), 9(5), 103. https://doi.org/10.3390/biology9050103. - PubMed
  152. Wallings, R., Manzoni, C., & Bandopadhyay, R. (2015). Cellular processes associated with LRRK2 function and dysfunction. FEBS Journal, 282(15), 2806-2826. - PubMed
  153. Watanabe, R., Buschauer, R., Bohning, J., Audagnotto, M., Lasker, K., Lu, T. W., Boassa, D., Taylor, S., & Villa, E. (2020). The in situ structure of Parkinson's disease-linked LRRK2. Cell, 182(6), 1508-1518, e1516. - PubMed
  154. Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N., & Rubinsztein, D. C. (2003). Alpha-Synuclein is degraded by both autophagy and the proteasome. Journal of Biological Chemistry, 278(27), 25009-25013. - PubMed
  155. West, A. B., Moore, D. J., Biskup, S., Bugayenko, A., Smith, W. W., Ross, C. A., Dawson, V. L., & Dawson, T. M. (2005). Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16842-16847. - PubMed
  156. Westlake, C. J., Baye, L. M., Nachury, M. V., Wright, K. J., Ervin, K. E., Phu, L., Chalouni, C., Beck, J. S., Kirkpatrick, D. S., Slusarski, D. C., Sheffield, V. C., Scheller, R. H., & Jackson, P. K. (2011). Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 2759-2764. - PubMed
  157. Yahalom, G., Greenbaum, L., Israeli-Korn, S., Fay-Karmon, T., Livneh, V., Ruskey, J. A., Ronciere, L., Alam, A., Gan-Or, Z., & Hassin-Baer, S. (2019). Carriers of both GBA and LRRK2 mutations, compared to carriers of either, in Parkinson's disease: Risk estimates and genotype-phenotype correlations. Parkinsonism & Related Disorders, 62, 179-184. - PubMed
  158. Yang, S. Y., Gegg, M., Chau, D., & Schapira, A. (2020). Glucocerebrosidase activity, cathepsin D and monomeric alpha-synuclein interactions in a stem cell derived neuronal model of a PD associated GBA1 mutation. Neurobiology of Diseases, 134, 104620. - PubMed
  159. Ysselstein, D., Nguyen, M., Young, T. J., Severino, A., Schwake, M., Merchant, K., & Krainc, D. (2019). LRRK2 kinase activity regulates lysosomal glucocerebrosidase in neurons derived from Parkinson's disease patients. Nature Communications, 10(1), 5570. - PubMed
  160. Yu, L., McPhee, C. K., Zheng, L., Mardones, G. A., Rong, Y., Peng, J., Mi, N., Zhao, Y., Liu, Z., Wan, F., Hailey, D. W., Oorschot, V., Klumperman, J., Baehrecke, E. H., & Lenardo, M. J. (2010). Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature, 465(7300), 942-946. - PubMed
  161. Yu, M., Arshad, M., Wang, W., Zhao, D., Xu, L., & Zhou, L. (2018). LRRK2 mediated Rab8a phosphorylation promotes lipid storage. Lipids in Health and Disease, 17(1), 34. - PubMed
  162. Yuan, Y., Cao, P., Smith, M. A., Kramp, K., Huang, Y., Hisamoto, N., Matsumoto, K., Hatzoglou, M., Jin, H., & Feng, Z. (2011). Dysregulated LRRK2 signaling in response to endoplasmic reticulum stress leads to dopaminergic neuron degeneration in C. elegans. PLoS One, 6(8), e22354. - PubMed
  163. Zhang, Y., Shu, L., Sun, Q., Zhou, X., Pan, H., Guo, J., & Tang, B. (2018). Integrated genetic analysis of racial differences of common GBA variants in Parkinson's disease: A meta-analysis. Frontiers in Molecular Neuroscience, 11, 43. - PubMed
  164. Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R. J., Calne, D. B., Stoessl, A. J., Pfeiffer, R. F., Patenge, N., Carbajal, I. C., Vieregge, P., Asmus, F., Müller-Myhsok, B., Dickson, D. W., Meitinger, T., … Gasser, T. (2004). Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron, 44(4), 601-607. - PubMed
  165. Zunke, F., Andresen, L., Wesseler, S., Groth, J., Arnold, P., Rothaug, M., Mazzulli, J. R., Krainc, D., Blanz, J., Saftig, P., & Schwake, M. (2016). Characterization of the complex formed by beta-glucocerebrosidase and the lysosomal integral membrane protein type-2. Proceedings of the National Academy of Sciences of the United States of America, 113(14), 3791-3796. - PubMed
  166. Zunke, F., Moise, A. C., Belur, N. R., Gelyana, E., Stojkovska, I., Dzaferbegovic, H., Toker, N. J., Jeon, S., Fredriksen, K., & Mazzulli, J. R. (2018). Reversible conformational conversion of alpha-synuclein into toxic assemblies by glucosylceramide. Neuron, 97(1), 92-107, e110. - PubMed

Publication Types