Display options
Share it on

Cell Death Discov. 2020 Sep 29;6(1):95. doi: 10.1038/s41420-020-00328-5. eCollection 2020.

A defined N6-methyladenosine (m.

Cell death discovery

Brandon J Gheller, Jamie E Blum, Ern Hwei Hannah Fong, Olga V Malysheva, Benjamin D Cosgrove, Anna E Thalacker-Mercer

Affiliations

  1. Division of Nutritional Sciences, Cornell University, Ithaca, NY USA.
  2. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA.
  3. Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL USA.
  4. Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL USA.

PMID: 33083017 PMCID: PMC7524727 DOI: 10.1038/s41420-020-00328-5

Abstract

Muscle-specific adult stem cells (MuSCs) are required for skeletal muscle regeneration. To ensure efficient skeletal muscle regeneration after injury, MuSCs must undergo state transitions as they are activated from quiescence, give rise to a population of proliferating myoblasts, and continue either to terminal differentiation, to repair or replace damaged myofibers, or self-renewal to repopulate the quiescent population. Changes in MuSC/myoblast state are accompanied by dramatic shifts in their transcriptional profile. Previous reports in other adult stem cell systems have identified alterations in the most abundant internal mRNA modification, N6-methyladenosine (m

© The Author(s) 2020.

Keywords: Muscle stem cells; Stem-cell differentiation; Transcriptomics

Conflict of interest statement

Conflict of interestThe authors declare that they have no conflict of interest.

References

  1. Cell Death Discov. 2017 Nov 13;3:17071 - PubMed
  2. Development. 2015 May 1;142(9):1572-81 - PubMed
  3. Cell Death Dis. 2017 Mar 23;8(3):e2702 - PubMed
  4. Science. 2015 Feb 27;347(6225):1002-6 - PubMed
  5. Cell Rep. 2017 Apr 18;19(3):479-486 - PubMed
  6. Cell Rep. 2020 Mar 10;30(10):3583-3595.e5 - PubMed
  7. Nature. 2008 Nov 27;456(7221):502-6 - PubMed
  8. Cell. 1988 Feb 26;52(4):503-13 - PubMed
  9. Curr Top Dev Biol. 2018;126:235-284 - PubMed
  10. J Exp Med. 2007 May 14;204(5):1057-69 - PubMed
  11. Annu Rev Cell Dev Biol. 2017 Oct 6;33:319-342 - PubMed
  12. Nucleic Acids Res. 2012 May;40(10):4288-97 - PubMed
  13. J Vis Exp. 2019 Aug 23;(150): - PubMed
  14. Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):221-6 - PubMed
  15. Am J Physiol Endocrinol Metab. 2013 Mar 1;304(5):E453-65 - PubMed
  16. J Immunol. 2005 May 15;174(10):6477-89 - PubMed
  17. J Cell Mol Med. 2018 May;22(5):2558-2568 - PubMed
  18. Open Biol. 2017 Sep;7(9): - PubMed
  19. Methods. 2014 Oct 1;69(3):274-81 - PubMed
  20. Science. 2010 Aug 27;329(5995):1078-81 - PubMed
  21. J Cell Biochem. 2010 May 15;110(2):352-62 - PubMed
  22. Stem Cells Dev. 2016 Apr 1;25(7):530-41 - PubMed
  23. Nature. 2015 Oct 22;526(7574):591-4 - PubMed
  24. Genomics. 2003 Aug;82(2):109-21 - PubMed
  25. Nat Med. 2017 Nov;23(11):1369-1376 - PubMed
  26. Mol Cell. 2019 May 2;74(3):609-621.e6 - PubMed
  27. Development. 2011 Sep;138(17):3625-37 - PubMed
  28. Neuron. 2018 Jul 25;99(2):389-403.e9 - PubMed
  29. Nature. 2017 Jan 19;541(7637):371-375 - PubMed
  30. Stem Cells. 2007 Oct;25(10):2677-84 - PubMed
  31. J Cell Biol. 1994 Jun;125(6):1275-87 - PubMed
  32. Nat Chem Biol. 2011 Oct 16;7(12):885-7 - PubMed
  33. Hum Mol Genet. 2017 Jul 1;26(13):2398-2411 - PubMed
  34. Cell Rep. 2016 Mar 1;14(8):1940-52 - PubMed
  35. Nat Med. 2014 Mar;20(3):255-64 - PubMed
  36. Cell Stem Cell. 2014 Dec 4;15(6):707-19 - PubMed
  37. FASEB J. 2004 Feb;18(2):403-5 - PubMed
  38. Mamm Genome. 2013 Sep 11;: - PubMed
  39. Development. 2011 Sep;138(17):3639-46 - PubMed
  40. Nat Cell Biol. 2014 Feb;16(2):191-8 - PubMed
  41. Nat Methods. 2015 Apr;12(4):357-60 - PubMed
  42. Development. 2019 Jun 28;146(13): - PubMed
  43. Nucleic Acids Res. 2019 Jan 8;47(D1):D419-D426 - PubMed
  44. Dev Dyn. 2003 Jan;226(1):128-38 - PubMed
  45. Nat Rev Mol Cell Biol. 2016 May;17(5):267-79 - PubMed

Publication Types

Grant support