Display options
Share it on

Burns Trauma. 2021 Oct 20;9:tkab032. doi: 10.1093/burnst/tkab032. eCollection 2021.

Heparin resistance in severe thermal injury: A prospective cohort study.

Burns & trauma

Liam D Cato, Benjamin Bailiff, Joshua Price, Christos Ermogeneous, Jon Hazeldine, William Lester, Gillian Lowe, Christopher Wearn, Jonathan R B Bishop, Janet M Lord, Naiem Moiemen, Paul Harrison

Affiliations

  1. Scar Free Foundation Birmingham Centre for Burns Research, University Hospitals Birmingham Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2WB, UK.
  2. Department of Haematology, University Hospitals Birmingham Foundation Trust, Mindelsohn Way, Birmingham, B15 2WB, UK.
  3. Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
  4. NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham Foundation Trust, Mindelsohn Way, Birmingham, B15 2WB, UK.

PMID: 34692855 PMCID: PMC8528639 DOI: 10.1093/burnst/tkab032

Abstract

BACKGROUND: Low molecular-weight heparin (LMWH) is routinely administered to burn patients for thromboprophylaxis. Some studies have reported heparin resistance, yet the mechanism(s) and prevalence have not been systematically studied. We hypothesized that nucleosomes, composed of histone structures with associated DNA released from injured tissue and activated immune cells in the form of neutrophil extracellular traps (NETs or NETosis), neutralize LMWH resulting in suboptimal anticoagulation, assessed by reduction in anti-factor Xa activity.

METHODS: Blood was sampled from >15% total body surface area (TBSA) burn patients receiving LMWH on days 5, 10 and 14. Peak anti-factor Xa (AFXa) activity, anti-thrombin (ATIII) activity, cell-free DNA (cfDNA) levels and nucleosome levels were measured. Mixed effects regression was adjusted for multiple confounders, including injury severity and ATIII activity, and was used to test the association between nucleosomes and AFXa.

RESULTS: A total of 30 patients with severe burns were included. Mean TBSA 43% (SD 17). Twenty-three (77%) patients were affected by heparin resistance (defined by AFXa activity <0.2 IU/mL). Mean peak AFXa activity across samples was 0.18 IU/mL (SD 0.11). Mean ATIII was 81.9% activity (SD 20.4). Samples taken at higher LWMH doses were found to have significantly increased AFXa activity, though the effect was not observed at all doses, at 8000 IU no samples were heparin resistant. Nucleosome levels were negatively correlated with AFXa (

CONCLUSIONS: Heparin resistance is a prevalent issue in severe burns. Nucleosome levels were increased post-burn, and showed an inverse association with AFXa consistent with the hypothesis that they may interfere with the anticoagulant effect of heparin

© The Author(s) 2021. Published by Oxford University Press.

Keywords: Burn; Enoxaparin; Factor-Xa; Heparin resistance; Low molecular-weight heparin; NETosis; Neutrophil extracellular traps; Nucleosomes; Thrombosis

References

  1. Thromb Haemost. 2016 Mar;115(3):591-9 - PubMed
  2. N Engl J Med. 1997 Sep 4;337(10):688-98 - PubMed
  3. Br J Haematol. 2010 May;149(4):613-9 - PubMed
  4. J Burn Care Rehabil. 2002 Mar-Apr;23(2):97-102 - PubMed
  5. J Trauma Acute Care Surg. 2013 Jul;75(1):37-43; discussion 43 - PubMed
  6. Arch Intern Med. 1994 Jan 10;154(1):49-56 - PubMed
  7. Br J Haematol. 1984 Aug;57(4):585-96 - PubMed
  8. Sci Rep. 2017 Jun 12;7(1):3211 - PubMed
  9. Nature. 1999 Apr 1;398(6726):417-22 - PubMed
  10. Crit Care. 2014 Oct 16;18(5):563 - PubMed
  11. Nephrol Dial Transplant. 2003 Nov;18(11):2348-53 - PubMed
  12. Burns. 2017 Sep;43(6):1330-1334 - PubMed
  13. Baillieres Clin Haematol. 1990 Jul;3(3):531-44 - PubMed
  14. Burns. 2019 Feb;45(1):54-62 - PubMed
  15. J Surg Res. 2016 May 15;202(2):341-51 - PubMed
  16. J Burn Care Res. 2018 Apr 20;39(3):345-352 - PubMed
  17. Burns. 2007 Mar;33(2):173-8 - PubMed
  18. PLoS One. 2014 Nov 13;9(11):e111755 - PubMed
  19. Clin Pharmacokinet. 2003;42(12):1043-57 - PubMed
  20. Thromb Haemost. 2001 Aug;86(2):616-22 - PubMed
  21. Br J Clin Pharmacol. 1995 Dec;40(6):577-84 - PubMed
  22. Burns. 2018 Mar;44(2):288-297 - PubMed
  23. J Antimicrob Chemother. 1999 Sep;44(3):319-27 - PubMed
  24. Thromb Haemost. 2013 Mar;109(3):416-20 - PubMed
  25. Biochem J. 1983 Feb 1;209(2):455-60 - PubMed
  26. Int J Hematol. 2015 Feb;101(2):119-25 - PubMed
  27. Crit Care Med. 2003 May;31(5):1405-9 - PubMed
  28. J Burn Care Res. 2007 Sep-Oct;28(5):661-3 - PubMed
  29. Anesthesiology. 2015 Feb;122(2):448-64 - PubMed
  30. J Thromb Haemost. 2009 Jun;7(6):1000-8 - PubMed
  31. Br J Haematol. 2006 Apr;133(1):19-34 - PubMed
  32. Nat Commun. 2020 Dec 16;11(1):6408 - PubMed
  33. Blood. 2014 Feb 13;123(7):1098-101 - PubMed
  34. J Trauma. 2005 Dec;59(6):1336-43; discussion 1343-4 - PubMed
  35. Arterioscler Thromb Vasc Biol. 2014 Sep;34(9):1977-84 - PubMed
  36. Semin Thromb Hemost. 2010 Jun;36(4):429-36 - PubMed
  37. Crit Care. 2014 Sep 24;18(5):543 - PubMed
  38. Thromb Haemost. 2008 Aug;100(2):286-90 - PubMed
  39. Burns. 1997 Jun;23(4):300-5 - PubMed
  40. Semin Thromb Hemost. 2004 Feb;30 Suppl 1:69-80 - PubMed
  41. Blood. 2005 Oct 15;106(8):2710-5 - PubMed
  42. J Pharmacol Exp Ther. 2016 Feb;356(2):305-13 - PubMed
  43. Burns. 1999 Dec;25(8):749-52 - PubMed
  44. Acta Med Litu. 2019;26(1):38-45 - PubMed
  45. PLoS One. 2020 May 29;15(5):e0233644 - PubMed
  46. Nat Commun. 2015 Mar 26;6:6673 - PubMed
  47. Thromb Haemost. 1989 Nov 24;62(3):940-4 - PubMed
  48. Ann Biol Clin (Paris). 2011 Nov-Dec;69(6):699-704 - PubMed
  49. Burns. 2019 Feb;45(1):140-145 - PubMed
  50. Trends Cardiovasc Med. 2002 Nov;12(8):331-8 - PubMed
  51. Haematologica. 2017 Feb;102(2):206-213 - PubMed
  52. Catheter Cardiovasc Interv. 2002 Oct;57(2):187-90 - PubMed
  53. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15880-5 - PubMed
  54. Thromb Haemost. 1988 Aug 30;60(1):1-7 - PubMed

Publication Types