Display options
Share it on

Biophys Chem. 2021 Dec;279:106682. doi: 10.1016/j.bpc.2021.106682. Epub 2021 Sep 29.

Multi-start Evolutionary Nonlinear OpTimizeR (MENOTR): A hybrid parameter optimization toolbox.

Biophysical chemistry

Zachariah M Ingram, Nathaniel W Scull, David S Schneider, Aaron L Lucius

Affiliations

  1. Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.
  2. Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
  3. Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA. Electronic address: [email protected].

PMID: 34634538 PMCID: PMC8711798 DOI: 10.1016/j.bpc.2021.106682

Abstract

Parameter optimization or "data fitting" is a computational process that identifies a set of parameter values that best describe an experimental data set. Parameter optimization is commonly carried out using a computer program utilizing a non-linear least squares (NLLS) algorithm. These algorithms work by continuously refining a user supplied initial guess resulting in a systematic increase in the goodness of fit. A well-understood problem with this class of algorithms is that in the case of models with correlated parameters the optimized output parameters are initial guess dependent. This dependency can potentially introduce user bias into the resultant analysis. While many optimization programs exist, few address this dilemma. Here we present a data analysis tool, MENOTR, that is capable of overcoming the initial guess dependence in parameter optimization. Several case studies with published experimental data are presented to demonstrate the capabilities of this tool. The results presented here demonstrate how to effectively overcome the initial guess dependence of NLLS leading to greater confidence that the resultant optimized parameters are the best possible set of parameters to describe an experimental data set. While the optimization strategies implemented within MENOTR are not entirely novel, the application of these strategies to optimize parameters in kinetic and thermodynamic biochemical models is uncommon. MENOTR was designed to require minimal modification to accommodate a new model making it immediately accessible to researchers with a limited programming background. We anticipate that this toolbox can be used in a wide variety of data analysis applications. Prototype versions of this toolbox have been used in a number of published investigations already, as well as ongoing work with chemical-quenched flow, stopped-flow, and molecular tweezers data sets. STATEMENT OF SIGNIFICANCE: Non-linear least squares (NLLS) is a common form of parameter optimization in biochemistry kinetic and thermodynamic investigations These algorithms are used to fit experimental data sets and report corresponding parameter values. The algorithms are fast and able to provide good quality solutions for models involving few parameters. However, initial guess dependence is a well-known drawback of this optimization strategy that can introduce user bias. An alternative method of parameter optimization are genetic algorithms (GA). Genetic algorithms do not have an initial guess dependence but are slow at arriving at the best set of fit parameters. Here, we present MENOTR, a parameter optimization toolbox utilizing a hybrid GA/NLLS algorithm. The toolbox maximizes the strength of each strategy while minimizing the inherent drawbacks.

Copyright © 2021 Elsevier B.V. All rights reserved.

Keywords: Data fitting; Kinetics; Optimization; Thermodynamics

References

  1. J Mol Biol. 2011 Jun 10;409(3):399-414 - PubMed
  2. Methods Enzymol. 2016;567:257-78 - PubMed
  3. Methods Enzymol. 1992;210:1-37 - PubMed
  4. Biochemistry. 2019 Apr 23;58(16):2116-2124 - PubMed
  5. J Biol Chem. 2020 Jan 31;295(5):1288-1299 - PubMed
  6. J Biol Chem. 2009 Nov 6;284(45):31441-52 - PubMed
  7. Biophys Chem. 2017 Nov;230:84-88 - PubMed
  8. Methods Enzymol. 1992;210:117-29 - PubMed
  9. Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24533-24541 - PubMed
  10. J Mol Biol. 2010 Jun 25;399(5):665-79 - PubMed
  11. Biophys J. 2015 Dec 1;109(11):2382-93 - PubMed
  12. J Mol Biol. 2019 Mar 15;431(6):1250-1266 - PubMed
  13. Nucleic Acids Res. 2019 Dec 2;47(21):11044-11056 - PubMed
  14. Biochemistry. 2020 Mar 24;59(11):1202-1215 - PubMed
  15. J Mol Biol. 2013 Aug 9;425(15):2795-812 - PubMed
  16. Anal Biochem. 1992 Nov 1;206(2):215-25 - PubMed
  17. Nat Commun. 2019 Sep 4;10(1):3984 - PubMed
  18. Biophys J. 2018 Jun 5;114(11):2507-2515 - PubMed
  19. Biochemistry. 2013 Jul 23;52(29):4941-54 - PubMed
  20. J Mol Biol. 2002 Nov 29;324(3):409-28 - PubMed
  21. Biopolymers. 1992 Jan;32(1):45-52 - PubMed
  22. Biochemistry. 2017 Oct 24;56(42):5654-5662 - PubMed
  23. J Mol Biol. 2004 Jun 11;339(4):731-50 - PubMed
  24. Methods Enzymol. 2000;321:424-46 - PubMed
  25. Biochemistry. 2018 Jan 16;57(2):241-254 - PubMed
  26. Biophys J. 2020 Oct 6;119(7):1335-1350 - PubMed
  27. Nucleic Acids Res. 2021 Feb 26;49(4):1987-2004 - PubMed
  28. Science. 1993 Aug 13;261(5123):872-8 - PubMed
  29. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9384-9392 - PubMed
  30. Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16320-16325 - PubMed
  31. Biochem J. 2015 Aug 15;470(1):39-52 - PubMed
  32. Int J Mol Sci. 2018 Nov 19;19(11): - PubMed

Publication Types

Grant support