Display options
Share it on

Philos Trans A Math Phys Eng Sci. 2022 Feb 07;380(2216):20210064. doi: 10.1098/rsta.2021.0064. Epub 2021 Dec 20.

Cold atoms meet lattice gauge theory.

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

Monika Aidelsburger, Luca Barbiero, Alejandro Bermudez, Titas Chanda, Alexandre Dauphin, Daniel González-Cuadra, Przemysław R Grzybowski, Simon Hands, Fred Jendrzejewski, Johannes Jünemann, Gediminas Juzeliūnas, Valentin Kasper, Angelo Piga, Shi-Ju Ran, Matteo Rizzi, Germán Sierra, Luca Tagliacozzo, Emanuele Tirrito, Torsten V Zache, Jakub Zakrzewski, Erez Zohar, Maciej Lewenstein

Affiliations

  1. Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich 80799, Germany.
  2. Munich Center for Quantum Science and Technology (MCQST), München 80799, Germany.
  3. ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain.
  4. Institute for Condensed Matter Physics and Complex Systems, DISAT, Politecnico di Torino, I-10129 Torino, Italy.
  5. Departamento de Física Teorica, Universidad Complutense, Madrid 28040, Spain.
  6. Institute of Theoretical Physics, Jagiellonian University in Kraków, Kraków 30-348, Poland.
  7. The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy.
  8. Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Pozna?, Pozna?, Poland.
  9. Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea SA28PP, UK.
  10. Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK.
  11. Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg 69120, Germany.
  12. Institut für Physik, Johannes Gutenberg-Universität, Mainz 55128, Germany.
  13. Institute of Theoretical Physics and Astronomy, Vilnius University, Vilnius 10257, Lithuania.
  14. Departament of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Catalonia, Spain.
  15. Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China.
  16. Forschungszentrum Jülich GmbH, Institute of Quantum Control, Peter Grünberg Institut (PGI-8), Jülich 52425, Germany.
  17. Institute for Theoretical Physics, University of Cologne, Köln 50937, Germany.
  18. Instituto de Física Teórica, UAM/CSIC, Universidad Autònoma de Madrid, Madrid, Spain.
  19. Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Barcelona, Catalonia 08028, Spain.
  20. International School for Advanced Studies (SISSA), Trieste 34136, Italy.
  21. Center for Quantum Physics, University of Innsbruck, Innsbruck 6020, Austria.
  22. Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck 6020, Austria.
  23. Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
  24. ICREA, Passeig Lluis Companys 23, Barcelona 08010, Spain.

PMID: 34923836 PMCID: PMC8685612 DOI: 10.1098/rsta.2021.0064

Abstract

The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more 'accessible' and easier to manipulate for experimentalists, but this 'substitution' also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition. We will thus consider bosons in dynamical lattices corresponding to the bosonic Schwinger or [Formula: see text] Bose-Hubbard models. Another central idea of this review concerns atomic simulators of paradigmatic models of particle physics theory such as the Creutz-Hubbard ladder, or Gross-Neveu-Wilson and Wilson-Hubbard models. This article is not a general review of the rapidly growing field-it reviews activities related to quantum simulations for lattice field theories performed by the Quantum Optics Theory group at ICFO and their collaborators from 19 institutions all over the world. Finally, we will briefly describe our efforts to design experimentally friendly simulators of these and other models relevant for particle physics. This article is part of the theme issue 'Quantum technologies in particle physics'.

Keywords: lattice gauge theory; quantum simulations; ultracold quantum matter

References

  1. Nature. 2016 Jun 22;534(7608):516-9 - PubMed
  2. Phys Rev Lett. 2020 May 8;124(18):180602 - PubMed
  3. Phys Rev Lett. 2014 Nov 21;113(21):215303 - PubMed
  4. Phys Rev Lett. 2004 Feb 27;92(8):087904 - PubMed
  5. Sci Adv. 2019 Oct 11;5(10):eaav7444 - PubMed
  6. Phys Rev Lett. 2018 Aug 31;121(9):090402 - PubMed
  7. Phys Rev Lett. 2012 Oct 26;109(17):175302 - PubMed
  8. Nature. 2020 Nov;587(7834):392-396 - PubMed
  9. Nat Commun. 2019 Jun 19;10(1):2694 - PubMed
  10. Phys Rev Lett. 2010 Nov 5;105(19):190404 - PubMed
  11. Phys Rev Lett. 2013 Mar 22;110(12):125303 - PubMed
  12. Phys Rev Lett. 1988 Oct 31;61(18):2015-2018 - PubMed
  13. Science. 2011 Oct 14;334(6053):200-3 - PubMed
  14. Nature. 2017 Nov 29;551(7682):579-584 - PubMed
  15. Rep Prog Phys. 2015 Jun;78(6):066001 - PubMed
  16. Phys Rev Lett. 2005 Jul 22;95(4):040402 - PubMed
  17. Phys Rev Lett. 2013 Mar 22;110(12):125304 - PubMed
  18. Phys Rev Lett. 2014 Mar 28;112(12):120406 - PubMed
  19. Science. 2020 Mar 6;367(6482):1128-1130 - PubMed
  20. Rep Prog Phys. 2016 Jan;79(1):014401 - PubMed
  21. Phys Rev Lett. 2020 Mar 27;124(12):120503 - PubMed
  22. Nat Commun. 2013;4:2615 - PubMed
  23. Nature. 2017 May 17;545(7654):323-326 - PubMed
  24. Phys Rev Lett. 2012 Sep 21;109(12):125302 - PubMed
  25. Phys Rev Lett. 2011 Dec 30;107(27):275301 - PubMed
  26. Phys Rev Lett. 1989 Jun 5;62(23):2747-2750 - PubMed
  27. Phys Rev Lett. 2014 Aug 29;113(9):091601 - PubMed
  28. Phys Rev Lett. 2020 Dec 31;125(26):265301 - PubMed
  29. Nature. 2019 May;569(7756):355-360 - PubMed
  30. Phys Rev Lett. 2020 Jul 17;125(3):030503 - PubMed
  31. Phys Rev Lett. 2017 Feb 17;118(7):070501 - PubMed
  32. Nature. 2015 Dec 3;528(7580):77-83 - PubMed
  33. Phys Rev Lett. 2005 Jul 1;95(1):010403 - PubMed

Publication Types