Display options
Share it on

Biology (Basel). 2021 Dec 09;10(12). doi: 10.3390/biology10121307.

First Responders to Hyperosmotic Stress in Murine Astrocytes: Connexin 43 Gap Junctions Are Subject to an Immediate Ultrastructural Reorganization.

Biology

Anja Beckmann, Johanna Recktenwald, Alice Ferdinand, Alexander Grißmer, Carola Meier

Affiliations

  1. Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany.

PMID: 34943223 PMCID: PMC8698406 DOI: 10.3390/biology10121307

Abstract

In a short-term model of hyperosmotic stress, primary murine astrocytes were stimulated with a hyperosmolar sucrose solution for five minutes. Astrocytic gap junctions, which are mainly composed of Connexin (Cx) 43, displayed immediate ultrastructural changes, demonstrated by freeze-fracture replica immunogold labeling: their area, perimeter, and distance of intramembrane particles increased, whereas particle numbers per area decreased. Ultrastructural changes were, however, not accompanied by changes in Cx43 mRNA expression. In contrast, transcription of the gap junction regulator zonula occludens (ZO) protein 1 significantly increased, whereas its protein expression was unaffected. Phosphorylation of Serine (S) 368 of the Cx43 C-terminus has previously been associated with gap junction disassembly and reduction in gap junction communication. Hyperosmolar sucrose treatment led to enhanced phosphorylation of Cx43S368 and was accompanied by inhibition of gap junctional intercellular communication, demonstrated by a scrape loading-dye transfer assay. Taken together, Cx43 gap junctions are fast reacting elements in response to hyperosmolar challenges and can therefore be considered as one of the first responders to hyperosmolarity. In this process, phosphorylation of Cx43S368 was associated with disassembly of gap junctions and inhibition of their function. Thus, modulation of the gap junction assembly might represent a target in the treatment of brain edema or trauma.

Keywords: Cx43; FRIL; freeze fracture; hyperosmolar; sucrose; ultrastructure

References

  1. Neuroscience. 2004;129(4):915-34 - PubMed
  2. J Cell Biol. 1991 Dec;115(5):1357-74 - PubMed
  3. J Cell Sci. 1995 Nov;108 ( Pt 11):3443-9 - PubMed
  4. Neurol Res. 2013 Apr;35(3):255-62 - PubMed
  5. Glia. 2004 May;46(3):323-33 - PubMed
  6. Glia. 1997 Aug;20(4):299-307 - PubMed
  7. J Cell Sci. 2014 Jan 15;127(Pt 2):455-64 - PubMed
  8. Cold Spring Harb Perspect Biol. 2009 Jul;1(1):a002576 - PubMed
  9. Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3359-64 - PubMed
  10. Brain Res. 2001 May 18;901(1-2):55-61 - PubMed
  11. Biochim Biophys Acta Biomembr. 2018 Jan;1860(1):40-47 - PubMed
  12. J Neurosci. 2003 Oct 8;23(27):9254-62 - PubMed
  13. Methods. 2000 Feb;20(2):196-204 - PubMed
  14. Histochem Cell Biol. 2016 Nov;146(5):529-537 - PubMed
  15. J Cell Commun Signal. 2018 Mar;12(1):193-204 - PubMed
  16. Neurosci Biobehav Rev. 2017 Jun;77:87-97 - PubMed
  17. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11981-6 - PubMed
  18. FEBS Lett. 2014 Apr 17;588(8):1423-9 - PubMed
  19. J Cell Biol. 1977 Mar;72(3):628-41 - PubMed
  20. Circulation. 2018 Feb 6;137(6):605-618 - PubMed
  21. Cell Commun Adhes. 2003 Jul-Dec;10(4-6):401-6 - PubMed
  22. Exp Cell Res. 1987 Feb;168(2):422-30 - PubMed
  23. Invest Ophthalmol Vis Sci. 2014 Jun 17;55(7):4327-37 - PubMed
  24. Front Neurol. 2020 Jul 31;11:703 - PubMed
  25. J Am Heart Assoc. 2019 Aug 20;8(16):e012385 - PubMed
  26. Front Cell Neurosci. 2021 Mar 10;15:640406 - PubMed
  27. J Bioenerg Biomembr. 2010 Feb;42(1):79-84 - PubMed
  28. J Cell Biol. 2004 Nov 8;167(3):555-62 - PubMed
  29. Neuroscience. 2019 Jan 15;397:67-79 - PubMed
  30. Brain Res. 2012 Dec 3;1487:39-53 - PubMed
  31. Brain Res Brain Res Rev. 2000 Apr;32(1):29-44 - PubMed
  32. BMC Bioinformatics. 2012 Jun 18;13:134 - PubMed
  33. Nat Rev Cancer. 2016 Dec;16(12):775-788 - PubMed
  34. J Cell Biol. 1994 Mar;124(6):949-61 - PubMed
  35. Neurochem Res. 2017 Sep;42(9):2519-2536 - PubMed
  36. J Comp Neurol. 1997 Nov 17;388(2):265-92 - PubMed
  37. Nucleic Acids Res. 2001 May 1;29(9):e45 - PubMed
  38. Biochim Biophys Acta Biomembr. 2018 Jan;1860(1):48-64 - PubMed
  39. Biochim Biophys Acta. 2004 Mar 23;1662(1-2):81-95 - PubMed
  40. Biochem J. 2009 Apr 15;419(2):261-72 - PubMed
  41. Cell Tissue Res. 1999 May;296(2):307-21 - PubMed
  42. J Cell Biol. 1993 May;121(3):491-502 - PubMed
  43. J Physiol. 2019 Apr;597(8):2269-2295 - PubMed
  44. J Cell Physiol. 2006 Jan;206(1):9-15 - PubMed
  45. Phytother Res. 2017 Sep;31(9):1410-1418 - PubMed
  46. Histochem Cell Biol. 1997 Feb;107(2):87-96 - PubMed
  47. Biochim Biophys Acta Biomembr. 2018 Jan;1860(1):83-90 - PubMed
  48. Glia. 2016 Feb;64(2):214-26 - PubMed
  49. Front Physiol. 2014 Feb 25;5:71 - PubMed
  50. Int J Mol Sci. 2021 Mar 03;22(5): - PubMed
  51. Nat Methods. 2012 Jul;9(7):671-5 - PubMed
  52. Exp Neurol. 2010 Oct;225(2):250-61 - PubMed
  53. Mol Biol Cell. 2011 May;22(9):1516-28 - PubMed
  54. J Cell Biol. 1980 Dec;87(3 Pt 1):708-18 - PubMed
  55. Int J Mol Sci. 2018 May 10;19(5): - PubMed
  56. Cardiovasc Res. 2004 May 1;62(2):233-45 - PubMed
  57. Mol Biol Cell. 2017 Dec 1;28(25):3595-3608 - PubMed

Publication Types