Display options
Share it on

Methods Mol Biol. 2022;2402:103-121. doi: 10.1007/978-1-0716-1843-1_9.

Drug Meets Monolayer: Understanding the Interactions of Sterol Drugs with Models of the Lung Surfactant Monolayer Using Molecular Dynamics Simulations.

Methods in molecular biology (Clifton, N.J.)

Sheikh I Hossain, Mohammad Z Islam, Suvash C Saha, Evelyne Deplazes

Affiliations

  1. School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia.
  2. School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW, Australia.
  3. Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh.
  4. School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia. [email protected].

PMID: 34854039 DOI: 10.1007/978-1-0716-1843-1_9

Abstract

The lung surfactant monolayer (LSM) is a thin layer of lipids and proteins that forms the air/water interface of the alveoli. The primary function of the LSM is to reduce the surface tension at the air/water interface during breathing. The LSM also forms the main biological barrier for any inhaled particles, including drugs, to treat lung diseases. Elucidating the mechanism by which these drugs bind to and absorb into the LSM requires a molecular-level understanding of any drug-induced changes to the morphology, structure, and phase changes of the LSM.Molecular dynamics simulations have been used extensively to study the structure and dynamics of the LSM. The monolayer is usually simulated in at least two states: the compressed state, mimicking exhalation, and the expanded state, mimicking inhalation. In this chapter, we provide detailed instructions on how to set up, run, and analyze coarse-grained MD simulations to study the concentration-dependent effect of a sterol drug on the LSM, both in the expanded and compressed state.

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Drug-lipid interactions; Lung surfactant monolayer; Molecular dynamics simulations; Molecular interactions; Pulmonary surfactants; Sterol drugs

References

  1. Zasadzinski JA, Ding J, Warriner HE, Bringezu F, Waring AJ (2001) The physics and physiology of lung surfactants. Curr Opin Colloid Interface Sci 6(5–6):506–513 - PubMed
  2. Alonso C, Alig T, Yoon J, Bringezu F, Warriner H, Zasadzinski JAJBJ (2004) More than a monolayer: relating lung surfactant structure and mechanics to composition. Biophys J 87(6):4188–4202 - PubMed
  3. Han S, Mallampalli RK (2015) The role of surfactant in lung disease and host defense against pulmonary infections. Ann Am Thorac Soc 12(5):765–774 - PubMed
  4. Hidalgo A, Cruz A, Perez-Gil J (2015) Barrier or carrier? Pulmonary surfactant and drug delivery. Eur J Pharm Biopharm 95(Pt a):117–127. https://doi.org/10.1016/j.ejpb.2015.02.014 - PubMed
  5. Ruge CA, Kirch J, Lehr C-M (2013) Pulmonary drug delivery: from generating aerosols to overcoming biological barriers—therapeutic possibilities and technological challenges. Lancet Respir Med 1(5):402–413. https://doi.org/10.1016/S2213-2600(13)70072-9 - PubMed
  6. Wang F, Liu J, Zeng HJ (2020) Interactions of particulate matter and pulmonary surfactant: implications for human health. Adv Colloid Interface Sci 284:102244 - PubMed
  7. Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6(1):67–74. https://doi.org/10.1038/nrd2153 - PubMed
  8. Parra E, Pérez-Gil J (2015) Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids 185:153–175. https://doi.org/10.1016/j.chemphyslip.2014.09.002 - PubMed
  9. Goerke J (1998) Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta (BBA) Mol Basis Dis 1408(2–3):79–89. https://doi.org/10.1016/S0925-4439(98)00060-X - PubMed
  10. Sethi G, Singhal KK (2008) Pulmonary diseases and corticosteroids. Indian J Pediatrics 75(10):1045–1056 - PubMed
  11. Polin RA, Carlo WAJP (2014) Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics 133(1):156–163 - PubMed
  12. Baoukina S, Tieleman DP (2016) Computer simulations of lung surfactant. Biochim Biophys Acta Biomembr 1858(10):2431–2440. https://doi.org/10.1016/j.bbamem.2016.02.030 - PubMed
  13. Baoukina S, Tieleman DP (2013) Simulations of lipid monolayers. In: Biomolecular simulations, vol 924, pp 431–444. https://doi.org/10.1007/978-1-62703-017-5_16 - PubMed
  14. Rose D, Rendell J, Lee D, Nag K, Booth V (2008) Molecular dynamics simulations of lung surfactant lipid monolayers. Biophys Chem 138(3):67–77. https://doi.org/10.1016/j.bpc.2008.08.006 - PubMed
  15. Rekvig L, Hafskjold B, Smit BJ (2004) Chain length dependencies of the bending modulus of surfactant monolayers. Phys Rev Lett 92(11):116101 - PubMed
  16. Baoukina S, Tieleman DP (2011) Lung surfactant protein SP-B promotes formation of bilayer reservoirs from monolayer and lipid transfer between the interface and subphase. Biophys J 100(7):1678–1687. https://doi.org/10.1016/j.bpj.2011.02.019 - PubMed
  17. Laing C, Baoukina S, Peter Tieleman D (2009) Molecular dynamics study of the effect of cholesterol on the properties of lipid monolayers at low surface tensions. Phys Chem Chem Phys 11(12):1916–1922. https://doi.org/10.1039/B819767A - PubMed
  18. Duncan SL, Larson RG (2010) Folding of lipid monolayers containing lung surfactant proteins SP-B1–25 and SP-C studied via coarse-grained molecular dynamics simulations. Biochim Biophys Acta Biomembr 1798(9):1632–1650. https://doi.org/10.1016/j.bbamem.2010.04.006 - PubMed
  19. Mohammad-Aghaie D, Mace E, Sennoga CA, Seddon JM, Bresme F (2010) Molecular dynamics simulations of liquid condensed to liquid expanded transitions in DPPC monolayers. J Phys Chem B 114(3):1325–1335. https://doi.org/10.1021/jp9061303 - PubMed
  20. Duncan SL, Dalal IS, Larson RG (2011) Molecular dynamics simulation of phase transitions in model lung surfactant monolayers. Biochim Biophys Acta Biomembr 1808(10):2450–2465. https://doi.org/10.1016/j.bbamem.2011.06.026 - PubMed
  21. Baoukina S, Monticelli L, Risselada HJ, Marrink SJ, Tieleman DP (2008) The molecular mechanism of lipid monolayer collapse. Proc Natl Acad Sci U S A 105(31):10803–10808. https://doi.org/10.1073/pnas.0711563105 - PubMed
  22. Baoukina S, Monticelli L, Amrein M, Tieleman DP (2007) The molecular mechanism of monolayer-bilayer transformations of lung surfactant from molecular dynamics simulations. Biophys J 93(11):3775–3782. https://doi.org/10.1529/biophysj.107.113399 - PubMed
  23. Baoukina S, Mendez-Villuendas E, Tieleman DP (2012) Molecular view of phase coexistence in lipid monolayers. J Am Chem Soc 134(42):17543–17553. https://doi.org/10.1021/ja304792p - PubMed
  24. Hossain SI, Gandhi NS, Hughes ZE, Saha S (2020) The role of SP-B1-25 peptides in lung surfactant monolayers exposed to gold nanoparticles. Phys Chem Chem Phys 22(27):15231–15241. https://doi.org/10.1039/D0CP00268B - PubMed
  25. Hossain SI, Gandhi NS, Hughes ZE, Gu YT, Saha SC (2019) Molecular insights on the interference of simplified lung surfactant models by gold nanoparticle pollutants. Biochim Biophys Acta Biomembr 1861(8):1458–1467. https://doi.org/10.1016/j.bbamem.2019.06.001 - PubMed
  26. Hossain SI, Gandhi NS, Hughes ZE, Saha SC (2019) Computational modelling of the interaction of gold nanoparticle with lung surfactant monolayer. MRS Adv 4(20):1177–1185. https://doi.org/10.1557/adv.2019.93 - PubMed
  27. Schneemilch M, Quirke N (2010) Molecular dynamics of nanoparticle translocation at lipid interfaces. Mol Simul 36(11):831–835. https://doi.org/10.1080/08927021003775433 - PubMed
  28. Choe S, Chang R, Jeon J, Violi A (2008) Molecular dynamics simulation study of a pulmonary surfactant film interacting with a carbonaceous nanoparticle. Biophys J 95(9):4102–4114. https://doi.org/10.1529/biophysj.107.123976 - PubMed
  29. Estrada-Lopez ED, Murce E, Franca MPP, Pimentel AS (2017) Prednisolone adsorption on lung surfactant models: insights on the formation of nanoaggregates, monolayer collapse and prednisolone spreading. RSC Adv 7(9):5272–5281. https://doi.org/10.1039/C6RA28422A - PubMed
  30. Hu J, Liu H, Xu P, Shang Y, Liu HJL (2019) Investigation of drug for pulmonary administration–model pulmonary surfactant monolayer interactions using Langmuir–Blodgett monolayer and molecular dynamics simulation: a case study of Ketoprofen. Langmuir 35(41):13452–13460 - PubMed
  31. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25 - PubMed
  32. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824 - PubMed
  33. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5 - PubMed
  34. Martini coarse grain forcefield for biomolecules. http://cgmartini.nl/index.php/force-field-parameters . Accessed Jan 2021 - PubMed
  35. Wassenaar TA, Ingolfsson HI, Bockmann RA, Tieleman DP, Marrink SJ (2015) Computational Lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11(5):2144–2155. https://doi.org/10.1021/acs.jctc.5b00209 - PubMed
  36. Romo TD, Grossfield AJ (2011) Block covariance overlap method and convergence in molecular dynamics simulation. J Chem Theory Comput 7(8):2464–2472 - PubMed
  37. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32(10):2319–2327 - PubMed
  38. Buchoux SJB (2017) FATSLiM: a fast and robust software to analyze MD simulations of membranes. Bioinformatics 33(1):133–134 - PubMed
  39. Gapsys V, de Groot BL, Briones RJ (2013) Computational analysis of local membrane properties. J Comput Aided Mol Des 27(10):845–858 - PubMed
  40. Lukat G, Krüger J, Sommer B (2013) APL@ Voro: a Voronoi-based membrane analysis tool for GROMACS trajectories. J Chem Inf Model 53(11):2908–2925 - PubMed
  41. Seelig J (1977) Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys 10(3):353–418 - PubMed
  42. Vermeer LS, de Groot BL, Réat V, Milon A, Czaplicki J (2007) Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments. Eur Biophys J 36(8):919–931. https://doi.org/10.1007/s00249-007-0192-9 - PubMed
  43. Piggot TJ, Allison JR, Sessions RB, Essex JW (2017) On the calculation of acyl chain order parameters from lipid simulations. J Chem Theory Comput 13(11):5683–5696. https://doi.org/10.1021/acs.jctc.7b00643 - PubMed
  44. Petrache HI, Tu K, Nagle JF (1999) Analysis of simulated NMR order parameters for lipid bilayer structure determination. Biophys J 76(5):2479–2487 - PubMed
  45. Martini coarse grain forcefield for biomolecules. http://www.cgmartini.nl/index.php/downloads/tools/229-do-order . Accessed Jan 2019 - PubMed
  46. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865 - PubMed
  47. memgen. http://memgen.uni-goettingen.de/ . Accessed Apr 2017 - PubMed
  48. MemBuilder-II. http://bioinf.modares.ac.ir/software/mb2/ . Accessed Jan 2021 - PubMed

Publication Types