Display options
Share it on

Cells. 2021 Dec 09;10(12). doi: 10.3390/cells10123481.

Phenotypical and Myopathological Consequences of Compound Heterozygous Missense and Nonsense Variants in .

Cells

Adela Della Marina, Annabelle Arlt, Ulrike Schara-Schmidt, Christel Depienne, Andrea Gangfuß, Heike Kölbel, Albert Sickmann, Erik Freier, Nicolai Kohlschmidt, Andreas Hentschel, Joachim Weis, Artur Czech, Anika Grüneboom, Andreas Roos

Affiliations

  1. Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany.
  2. Institute of Clinical Genetics and Tumor Genetics Bonn, 53111 Bonn, Germany.
  3. Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany.
  4. Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., 44139 Dortmund, Germany.
  5. Institute of Neuropathology, University Hospital Aachen, RWTH-Aachen University, 52074 Aachen, Germany.
  6. Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.

PMID: 34943989 DOI: 10.3390/cells10123481

Abstract

BACKGROUND: Presynaptic forms of congenital myasthenic syndromes (CMS) due to pathogenic variants in

METHODS: Exome sequencing (ES) was carried out to identify the molecular genetic cause of the disease in a 5-year-old male patient and histological, immunofluorescence as well as electron- and CARS-microscopic studies were performed to delineate the muscle pathology, which has so far only been studied in VAChT-deficient animal models.

RESULTS: ES unraveled compound heterozygous missense and nonsense variants (c.315G>A, p.Trp105* and c.1192G>C, p.Asp398His) in

CONCLUSIONS: We suggest that nonsense variants have a more detrimental impact on the clinical manifestation of

Keywords: CARS microscopy; SLC18A1; congenital myasthenic syndrome; lipid accumulation; muscle biopsy; vesicular acetylcholine transporter (VAChT)

References

  1. Am J Med Genet A. 2019 Jul;179(7):1362-1365 - PubMed
  2. JAMA Neurol. 2014 Oct;71(10):1255-65 - PubMed
  3. Neurology. 2016 Oct 4;87(14):1442-1448 - PubMed
  4. FEBS J. 2021 Sep;288(18):5331-5349 - PubMed
  5. Curr Opin Neurol. 2019 Oct;32(5):696-703 - PubMed
  6. Brain Pathol. 2020 Sep;30(5):877-896 - PubMed
  7. BMJ Case Rep. 2021 Jan 18;14(1): - PubMed
  8. Neurology. 2018 Nov 6;91(19):e1770-e1777 - PubMed
  9. Front Neurol. 2019 Mar 19;10:257 - PubMed
  10. Science. 2010 Dec 3;330(6009):1368-70 - PubMed
  11. Skelet Muscle. 2018 Aug 28;8(1):28 - PubMed
  12. Biophys J. 2002 Jul;83(1):502-9 - PubMed
  13. Mol Cell Biol. 2009 Oct;29(19):5238-50 - PubMed
  14. Am J Hum Genet. 2016 Sep 1;99(3):753-761 - PubMed
  15. Biochim Biophys Acta. 2014 Aug;1841(8):1120-9 - PubMed
  16. Muscle Nerve. 2019 Dec;60(6):790-800 - PubMed
  17. Nat Photonics. 2014 Feb 1;8(2):153-159 - PubMed
  18. Biomed Opt Express. 2011 Aug 1;2(8):2307-16 - PubMed
  19. Orphanet J Rare Dis. 2021 Feb 9;16(1):73 - PubMed
  20. J Neurol. 2018 Jan;265(1):194-203 - PubMed
  21. Brain Pathol. 2017 Nov;27(6):781-794 - PubMed
  22. Genet Med. 2015 May;17(5):405-24 - PubMed
  23. Biophys J. 2008 Nov 15;95(10):4908-14 - PubMed
  24. Ann N Y Acad Sci. 1976;274:46-59 - PubMed
  25. Brain. 2017 Nov 1;140(11):2838-2850 - PubMed
  26. Neurosci Lett. 2016 Mar 23;617:122-6 - PubMed
  27. Am J Med Genet A. 2018 Jan;176(1):151-155 - PubMed
  28. Genes Brain Behav. 2009 Feb;8(1):23-35 - PubMed
  29. Eur J Paediatr Neurol. 2010 Jul;14(4):326-33 - PubMed
  30. Neuron. 2006 Sep 7;51(5):601-12 - PubMed
  31. Neurology. 2017 Mar 14;88(11):1021-1028 - PubMed

Publication Types