Display options
Share it on

Nanomaterials (Basel). 2021 Dec 19;11(12). doi: 10.3390/nano11123444.

Crystallization in Zirconia Film Nano-Layered with Silica.

Nanomaterials (Basel, Switzerland)

Brecken Larsen, Christopher Ausbeck, Timothy F Bennet, Gilberto DeSalvo, Riccardo DeSalvo, Tugdual LeBohec, Seth Linker, Marina Mondin, Joshua Neilson

Affiliations

  1. Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, UT 84112, USA.
  2. Department of Physics and Astronomy, California State University, 5151 State University Drive, Los Angeles, CA 90032, USA.
  3. RicLab, 1650 Casa Grande Street, Pasadena, CA 91104, USA.
  4. Department of Engineering, University of Sannio at Benevento, C.so Garibaldi 107, Pal. dell'Aquila Bosco-Lucarelli, and INFN, Sezione di Napoli Gruppo Collegato di Salerno, Piazza Guerrazzi, 82100 Benevento, Italy.
  5. Gran Sasso Science Institute, Viale Francesco Crispi, 7, 67100 L'Aquila, Italy.

PMID: 34947793 PMCID: PMC8705756 DOI: 10.3390/nano11123444

Abstract

Gravitational waves are detected using resonant optical cavity interferometers. The mirror coatings' inherent thermal noise and photon scattering limit sensitivity. Crystals within the reflective coating may be responsible for either or both noise sources. In this study, we explored crystallization reduction in zirconia through nano-layering with silica. We used X-ray diffraction (XRD) to monitor crystal growth between successive annealing cycles. We observed crystal formation at higher temperatures in thinner zirconia layers, indicating that silica is a successful inhibitor of crystal growth. However, the thinnest barriers break down at high temperatures, thus allowing crystal growth beyond each nano-layer. In addition, in samples with thicker zirconia layers, we observe that crystallization saturates with a significant portion of amorphous material remaining.

Keywords: XRD; annealing; coating; nano-layering; noise; thin film

References

  1. Appl Opt. 2006 Mar 1;45(7):1436-9 - PubMed
  2. Opt Express. 2013 May 6;21(9):10546-62 - PubMed
  3. Rev Sci Instrum. 2020 May 1;91(5):054505 - PubMed
  4. Opt Express. 2012 Apr 9;20(8):8329-36 - PubMed
  5. Opt Express. 2014 Dec 1;22(24):29847-54 - PubMed
  6. Appl Opt. 2020 Feb 10;59(5):A229-A235 - PubMed
  7. Nat Nanotechnol. 2011 Aug 28;6(9):534 - PubMed
  8. Phys Rev Lett. 1988 Feb 1;60(5):424-427 - PubMed
  9. Phys Rev D Part Fields. 1996 Jul 15;54(2):1276-1286 - PubMed

Publication Types

Grant support