Display options
Share it on

Nat Cancer. 2021 Dec;2(12):1387-1405. doi: 10.1038/s43018-021-00272-y. Epub 2021 Nov 25.

Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism.

Nature cancer

Susana García-Silva, Alberto Benito-Martín, Laura Nogués, Alberto Hernández-Barranco, Marina S Mazariegos, Vanesa Santos, Marta Hergueta-Redondo, Pilar Ximénez-Embún, Raghu P Kataru, Ana Amor Lopez, Cristina Merino, Sara Sánchez-Redondo, Osvaldo Graña-Castro, Irina Matei, José Ángel Nicolás-Avila, Raúl Torres-Ruiz, Sandra Rodríguez-Perales, Lola Martínez, Manuel Pérez-Martínez, Gadea Mata, Anna Szumera-Ciećkiewicz, Iwona Kalinowska, Annalisa Saltari, Julia M Martínez-Gómez, Sabrina A Hogan, H Uri Saragovi, Sagrario Ortega, Carmen Garcia-Martin, Jasminka Boskovic, Mitchell P Levesque, Piotr Rutkowski, Andrés Hidalgo, Javier Muñoz, Diego Megías, Babak J Mehrara, David Lyden, Héctor Peinado

Affiliations

  1. Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
  2. Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA.
  3. Proteomics Unit - ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
  4. Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  5. Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
  6. Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
  7. Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
  8. Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
  9. Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
  10. Maria Sklodowska-Curie National Research Institute of Oncology, Department of Pathology and Laboratory Medicine, Warsaw, Poland.
  11. Institute of Hematology and Transfusion Medicine, Diagnostic Hematology Department, Warsaw, Poland.
  12. Maria Sklodowska-Curie National Research Institute of Oncology, Department of Soft Tissue/Bone Sarcoma and Melanoma, Warsaw, Poland.
  13. Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland.
  14. Lady Davis Institute-Jewish General Hospital, Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
  15. Transgenic Mice Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
  16. Electron Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain.

PMID: 34957415 PMCID: PMC8697753 DOI: 10.1038/s43018-021-00272-y

Abstract

Secreted extracellular vesicles (EVs) influence the tumor microenvironment and promote distal metastasis. Here, we analyzed the involvement of melanoma-secreted EVs in lymph node pre-metastatic niche formation in murine models. We found that small EVs (sEVs) derived from metastatic melanoma cell lines were enriched in nerve growth factor receptor (NGFR, p75NTR), spread through the lymphatic system and were taken up by lymphatic endothelial cells, reinforcing lymph node metastasis. Remarkably, sEVs enhanced lymphangiogenesis and tumor cell adhesion by inducing ERK kinase, nuclear factor (NF)-κB activation and intracellular adhesion molecule (ICAM)-1 expression in lymphatic endothelial cells. Importantly, ablation or inhibition of NGFR in sEVs reversed the lymphangiogenic phenotype, decreased lymph node metastasis and extended survival in pre-clinical models. Furthermore, NGFR expression was augmented in human lymph node metastases relative to that in matched primary tumors, and the frequency of NGFR

Keywords: CD271; NGFR; cell adhesion; lymph node metastasis; lymphangiogenesis; melanoma metastasis; metastasis mechanisms; p75NTR; pre-metastatic niche formation; small extracellular vesicles

Conflict of interest statement

Competing Interests Statement The authors have no conflict of interests.

References

  1. J Cell Sci. 2009 Sep 15;122(Pt 18):3351-7 - PubMed
  2. Ann N Y Acad Sci. 2008;1131:119-33 - PubMed
  3. Nat Rev Cancer. 2013 Dec;13(12):858-70 - PubMed
  4. Nature. 2017 Jun 28;546(7660):676-680 - PubMed
  5. Appl Immunohistochem Mol Morphol. 2014;22(2):142-5 - PubMed
  6. Cell Rep. 2018 Dec 26;25(13):3554-3563.e4 - PubMed
  7. Cell Discov. 2015 Oct 27;1:15030 - PubMed
  8. Curr Opin Neurobiol. 2002 Jun;12(3):260-7 - PubMed
  9. Nat Med. 2011 Nov 07;17(11):1371-80 - PubMed
  10. Nat Rev Cancer. 2016 Jun;16(6):345-58 - PubMed
  11. J Clin Invest. 2007 Aug;117(8):2268-78 - PubMed
  12. Stem Cell Reports. 2017 May 9;8(5):1408-1420 - PubMed
  13. Int J Cancer. 2019 Sep 15;145(6):1648-1659 - PubMed
  14. Genes Dev. 2017 Aug 15;31(16):1615-1634 - PubMed
  15. J Invest Dermatol. 2013 Sep;133(9):2276-85 - PubMed
  16. Int J Clin Exp Pathol. 2014 Dec 01;7(12):8947-51 - PubMed
  17. Nat Commun. 2020 Aug 7;11(1):3946 - PubMed
  18. Front Immunol. 2011 Sep 12;2:35 - PubMed
  19. Oncogene. 2019 Feb;38(8):1256-1268 - PubMed
  20. Pathology. 2018 Jun;50(4):402-410 - PubMed
  21. J Cell Sci. 2014 May 1;127(Pt 9):1966-79 - PubMed
  22. BMC Cancer. 2012 Oct 05;12:455 - PubMed
  23. Nat Commun. 2017 Dec 7;8(1):1988 - PubMed
  24. Int J Cancer. 1987 Mar 15;39(3):414-8 - PubMed
  25. Nature. 2015 Nov 19;527(7578):329-35 - PubMed
  26. Oncol Rep. 2015 Jan;33(1):425-32 - PubMed
  27. J Physiol. 2001 May 1;532(Pt 3):785-91 - PubMed
  28. J Mol Med (Berl). 2015 Nov;93(11):1173-84 - PubMed
  29. Nature. 2010 Jul 1;466(7302):133-7 - PubMed
  30. J Neurosci. 2000 Oct 15;20(20):7556-63 - PubMed
  31. Am J Pathol. 2007 Feb;170(2):774-86 - PubMed
  32. JCI Insight. 2017 Jan 12;2(1):e90861 - PubMed
  33. J Exp Med. 2019 May 6;216(5):1091-1107 - PubMed
  34. J Exp Med. 2019 May 6;216(5):1061-1070 - PubMed
  35. Cancer Cell. 2016 Dec 12;30(6):836-848 - PubMed
  36. Cancer Res. 2011 Apr 15;71(8):3098-109 - PubMed
  37. Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6223-8 - PubMed
  38. Br J Dermatol. 2014 Jan;170(1):66-77 - PubMed
  39. J Histochem Cytochem. 1988 Apr;36(4):383-9 - PubMed
  40. PLoS One. 2014 May 05;9(5):e92596 - PubMed
  41. Biochem Cell Biol. 1996;74(6):749-57 - PubMed
  42. EMBO Mol Med. 2016 Oct 4;8(10):1143-1161 - PubMed
  43. Am J Pathol. 2012 Apr;180(4):1715-25 - PubMed
  44. Nat Med. 2012 Jun;18(6):883-91 - PubMed
  45. Oncogene. 2012 Oct 18;31(42):4499-508 - PubMed
  46. Cell. 2020 Nov 25;183(5):1282-1297.e18 - PubMed
  47. J Immunol. 2000 Jul 1;165(1):442-52 - PubMed
  48. J Biol Chem. 2010 Dec 10;285(50):39392-400 - PubMed
  49. Cell. 2020 Aug 20;182(4):1044-1061.e18 - PubMed
  50. Int J Oncol. 2012 Oct;41(4):1455-63 - PubMed
  51. PLoS One. 2014 Nov 10;9(11):e112737 - PubMed
  52. Cancer Res. 2011 Jun 1;71(11):3792-801 - PubMed
  53. Science. 1996 Apr 26;272(5261):542-5 - PubMed
  54. Gene. 2018 Nov 15;676:101-109 - PubMed
  55. J Exp Med. 2005 Apr 4;201(7):1089-99 - PubMed
  56. Blood. 2010 Jan 14;115(2):418-29 - PubMed
  57. Nat Rev Clin Oncol. 2010 Aug;7(8):446-54 - PubMed
  58. J Extracell Vesicles. 2019 Aug 1;8(1):1648167 - PubMed
  59. Sci Rep. 2016 Apr 18;6:24436 - PubMed
  60. J Exp Med. 2006 Nov 27;203(12):2763-77 - PubMed
  61. Science. 2016 Apr 8;352(6282):242-6 - PubMed
  62. Blood. 2011 Jan 6;117(1):362-5 - PubMed
  63. Blood. 2007 Feb 1;109(3):1010-7 - PubMed
  64. Nat Cell Biol. 2015 Jun;17(6):816-26 - PubMed
  65. Dev Biol. 2018 Dec 1;444 Suppl 1:S352-S355 - PubMed

Publication Types

Grant support