Display options
Share it on

Genes (Basel). 2021 Dec 13;12(12). doi: 10.3390/genes12121979.

VarGenius-HZD Allows Accurate Detection of Rare Homozygous or Hemizygous Deletions in Targeted Sequencing Leveraging Breadth of Coverage.

Genes

Francesco Musacchia, Marianthi Karali, Annalaura Torella, Steve Laurie, Valeria Policastro, Mariateresa Pizzo, Sergi Beltran, Giorgio Casari, Vincenzo Nigro, Sandro Banfi

Affiliations

  1. Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy.
  2. Center for Human Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy.
  3. Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania 'Luigi Vanvitelli', 80138 Naples, Italy.
  4. Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania 'Luigi Vanvitelli', 80138 Naples, Italy.
  5. CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.
  6. Institute for Applied Mathematics "Mauro Picone" (IAC), National Research Council, 80131 Naples, Italy.
  7. Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania 'Luigi Vanvitelli', 81100 Caserta, Italy.
  8. Universitat Pompeu Fabra (UPF), 08017 Barcelona, Spain.
  9. Department of Genetics, Microbiology and Statistics, Universitat de Barcelona (UB), 08028 Barcelona, Spain.
  10. Neurogenomics Unit, Center for Genomics, Bioinformatics and Biostatistics, San Raffaele Scientific Institute, 20132 Milan, Italy.

PMID: 34946927 DOI: 10.3390/genes12121979

Abstract

Homozygous deletions (HDs) may be the cause of rare diseases and cancer, and their discovery in targeted sequencing is a challenging task. Different tools have been developed to disentangle HD discovery but a sensitive caller is still lacking. We present VarGenius-HZD, a sensitive and scalable algorithm that leverages breadth-of-coverage for the detection of rare homozygous and hemizygous single-exon deletions (HDs). To assess its effectiveness, we detected both real and synthetic rare HDs in fifty exomes from the 1000 Genomes Project obtaining higher sensitivity in comparison with state-of-the-art algorithms that each missed at least one event. We then applied our tool on targeted sequencing data from patients with Inherited Retinal Dystrophies and solved five cases that still lacked a genetic diagnosis. We provide VarGenius-HZD either stand-alone or integrated within our recently developed software, enabling the automated selection of samples using the internal database. Hence, it could be extremely useful for both diagnostic and research purposes.

Keywords: copy-number variation; homozygous deletion; rare diseases

References

  1. Gigascience. 2018 Oct 1;7(10): - PubMed
  2. Bioinformatics. 2010 Mar 1;26(5):589-95 - PubMed
  3. BMC Genomics. 2016 Jan 14;17:51 - PubMed
  4. Nucleic Acids Res. 2010 Sep;38(16):e164 - PubMed
  5. Curr Protoc Hum Genet. 2014 Apr 24;81:7.23.1-21 - PubMed
  6. Annu Rev Genomics Hum Genet. 2020 Aug 31;21:351-372 - PubMed
  7. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4542-7 - PubMed
  8. Eur J Hum Genet. 2017 Jun;25(6):719-724 - PubMed
  9. Annu Rev Genomics Hum Genet. 2016 Aug 31;17:95-115 - PubMed
  10. Am J Hum Genet. 2016 Oct 6;99(4):791-801 - PubMed
  11. Genet Med. 2019 Sep;21(9):2135-2144 - PubMed
  12. Genet Med. 2019 Jun;21(6):1319-1329 - PubMed
  13. Bioinformatics. 2012 Nov 1;28(21):2747-54 - PubMed
  14. Nucleic Acids Res. 2017 Feb 28;45(4):1633-1648 - PubMed
  15. BMC Genomics. 2014 Aug 07;15:661 - PubMed
  16. F1000Res. 2020 Jan 29;9:63 - PubMed
  17. Mol Cytogenet. 2017 Aug 23;10:30 - PubMed
  18. BMC Bioinformatics. 2013;14 Suppl 11:S1 - PubMed
  19. Hum Genet. 2016 Jun;135(6):603-14 - PubMed
  20. Front Neurol. 2019 May 21;10:434 - PubMed
  21. Genet Med. 2016 Sep;18(9):949-56 - PubMed
  22. Hum Mutat. 2014 Jul;35(7):899-907 - PubMed
  23. Nat Rev Genet. 2018 May;19(5):253-268 - PubMed
  24. Cell. 2011 Sep 30;147(1):32-43 - PubMed
  25. Eur J Hum Genet. 2020 Dec;28(12):1645-1655 - PubMed
  26. Genome Res. 2012 Aug;22(8):1525-32 - PubMed
  27. J Hum Genet. 2015 May;60(5):267-71 - PubMed
  28. Wellcome Open Res. 2016 Nov 25;1:20 - PubMed
  29. Genet Med. 2020 Oct;22(10):1633-1641 - PubMed
  30. Nature. 2015 Oct 1;526(7571):68-74 - PubMed
  31. BMC Bioinformatics. 2017 May 31;18(1):286 - PubMed
  32. Bioinformatics. 2012 May 15;28(10):1307-13 - PubMed
  33. Genet Med. 2014 Feb;16(2):176-82 - PubMed
  34. Hum Mutat. 2016 May;37(5):457-64 - PubMed
  35. Curr Protoc Bioinformatics. 2013;43:11.10.1-11.10.33 - PubMed
  36. Eur J Hum Genet. 2013 Sep;21(9):977-87 - PubMed
  37. Genet Med. 2017 Jun;19(6):667-675 - PubMed
  38. Bioinformatics. 2018 Oct 15;34(20):3572-3574 - PubMed
  39. BMC Bioinformatics. 2018 Dec 12;19(1):477 - PubMed
  40. Genet Med. 2015 Feb;17(2):99-107 - PubMed
  41. Biomed Res Int. 2013;2013:915636 - PubMed
  42. Nat Rev Genet. 2013 Oct;14(10):681-91 - PubMed
  43. Nat Commun. 2017 Oct 31;8(1):1221 - PubMed
  44. Nature. 2006 Nov 23;444(7118):444-54 - PubMed
  45. Genome Med. 2016 Aug 08;8(1):82 - PubMed
  46. Genet Med. 2016 Nov;18(11):1090-1096 - PubMed

Publication Types

Grant support