Display options
Share it on

Viruses. 2021 Dec 15;13(12). doi: 10.3390/v13122522.

The Valproic Acid Derivative Valpromide Inhibits Pseudorabies Virus Infection in Swine Epithelial and Mouse Neuroblastoma Cell Lines.

Viruses

Sabina Andreu, Inés Ripa, Beatriz Praena, José Antonio López-Guerrero, Raquel Bello-Morales

Affiliations

  1. Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
  2. Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Universidad Autónoma de Madrid (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain.
  3. MU Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310, USA.

PMID: 34960791 PMCID: PMC8708079 DOI: 10.3390/v13122522

Abstract

Pseudorabies virus (PRV) infection of swine can produce Aujeszky's disease, which causes neurological, respiratory, and reproductive symptoms, leading to significant economic losses in the swine industry. Although humans are not the natural hosts of PRV, cases of human encephalitis and endophthalmitis caused by PRV infection have been reported between animals and workers. Currently, a lack of specific treatments and the emergence of new PRV strains against which existing vaccines do not protect makes the search for effective antiviral drugs essential. As an alternative to traditional nucleoside analogues such as acyclovir (ACV), we studied the antiviral effect of valpromide (VPD), a compound derived from valproic acid, against PRV infection in the PK15 swine cell line and the neuroblastoma cell line Neuro-2a. First, the cytotoxicity of ACV and VPD in cells was compared, demonstrating that neither compound was cytotoxic at a specific concentration range after 24 h exposure. Furthermore, the lack of direct virucidal effect of VPD outside of an infected cell environment was demonstrated. Finally, VPD was shown to have an antiviral effect on the viral production of two strains of pseudorabies virus (wild type NIA-3 and recombinant PRV-XGF) at the concentrations ranging from 0.5 to 1.5 mM, suggesting that VPD could be a suitable alternative to nucleoside analogues as an antiherpetic drug against Aujeszky's disease.

Keywords: PRV; SuHV-1; antiviral; herpesvirus; pseudorabies virus; suid herpesvirus 1; valpromide

References

  1. mBio. 2016 Mar 01;7(2):e00113 - PubMed
  2. Curr Opin Neurol. 2003 Apr;16(2):203-11 - PubMed
  3. Adv Exp Med Biol. 2018;1045:103-122 - PubMed
  4. J Neurovirol. 2020 Aug;26(4):556-564 - PubMed
  5. Vet Res. 2007 Mar-Apr;38(2):229-41 - PubMed
  6. Drugs. 1994 Jan;47(1):153-205 - PubMed
  7. J Feline Med Surg. 2013 Jul;15(7):555-6 - PubMed
  8. Emerg Infect Dis. 2013 Nov;19(11):1749-55 - PubMed
  9. Microbiol Mol Biol Rev. 2005 Sep;69(3):462-500 - PubMed
  10. Virology. 2016 Dec;499:121-135 - PubMed
  11. J Gen Virol. 2010 Jan;91(Pt 1):23-31 - PubMed
  12. Acta Virol. 1976 Jun;20(3):208-14 - PubMed
  13. Pathogens. 2020 Mar 31;9(4): - PubMed
  14. J Infect Dis. 2019 May 5;219(11):1705-1715 - PubMed
  15. Int J Infect Dis. 2019 Oct;87:92-99 - PubMed
  16. Antiviral Res. 2019 Aug;168:91-99 - PubMed
  17. Biomed Environ Sci. 2020 Jun 20;33(6):444-447 - PubMed
  18. Viruses. 2020 Nov 26;12(12): - PubMed
  19. Viruses. 2019 May 17;11(5): - PubMed
  20. J Virol. 2011 Feb;85(3):1267-74 - PubMed
  21. Acta Neurochir Suppl (Wien). 1991;52:3-4 - PubMed
  22. Int J Mol Sci. 2017 Sep 06;18(9): - PubMed
  23. J Control Release. 1999 Nov 1;62(1-2):187-92 - PubMed
  24. Paediatr Perinat Epidemiol. 2013 Jul;27(4):340-5 - PubMed
  25. Front Microbiol. 2019 Aug 14;10:1853 - PubMed
  26. Transbound Emerg Dis. 2020 Mar;67(2):518-522 - PubMed
  27. J Biomed Biotechnol. 2010;2010: - PubMed
  28. Pathogens. 2020 Oct 27;9(11): - PubMed
  29. Emerg Infect Dis. 2018 Jun;24(6):1087-1090 - PubMed
  30. Arch Virol. 2011 Oct;156(10):1691-705 - PubMed
  31. J Neurovirol. 2005 Apr;11(2):190-8 - PubMed
  32. Virus Res. 2016 Mar 2;214:71-9 - PubMed
  33. Antiviral Res. 2013 Aug;99(2):172-9 - PubMed
  34. Pharm World Sci. 1994 Feb 18;16(1):2-6 - PubMed
  35. Biopharm Drug Dispos. 1984 Apr-Jun;5(2):177-83 - PubMed
  36. Med Hypotheses. 2020 Oct;143:109891 - PubMed
  37. Clin Infect Dis. 2021 Dec 6;73(11):e3690-e3700 - PubMed
  38. BMC Vet Res. 2018 Jan 19;14(1):20 - PubMed
  39. Biochemistry (Mosc). 2014 Dec;79(13):1635-52 - PubMed
  40. Pharmacogenet Genomics. 2013 Apr;23(4):236-41 - PubMed
  41. Vet Microbiol. 2016 Feb 1;183:119-24 - PubMed
  42. Virology. 1974 Mar;58(1):65-74 - PubMed
  43. Birth Defects Res. 2019 Aug 15;111(14):1013-1023 - PubMed
  44. Vet Microbiol. 2017 Jul;206:3-9 - PubMed
  45. J Clin Med. 2019 Sep 11;8(9): - PubMed
  46. Clin Infect Dis. 2004 Nov 1;39 Suppl 5:S248-57 - PubMed
  47. Birth Defects Res B Dev Reprod Toxicol. 2004 Feb;71(1):47-53 - PubMed
  48. Vet Res. 2000 Jan-Feb;31(1):99-115 - PubMed
  49. Epilepsy Res. 1998 Mar;30(1):41-8 - PubMed
  50. Mol Chem Neuropathol. 1992 Jun;16(3):303-17 - PubMed
  51. Vaccine. 2017 Feb 22;35(8):1161-1166 - PubMed
  52. Int J Oral Sci. 2016 Mar 30;8(1):1-6 - PubMed
  53. Neurotherapeutics. 2007 Jan;4(1):130-7 - PubMed
  54. Emerg Infect Dis. 2014 Jan;20(1):102-4 - PubMed
  55. J Am Acad Dermatol. 1988 Jan;18(1 Pt 2):176-9 - PubMed
  56. Mol Psychiatry. 2002;7(7):726-33 - PubMed
  57. Eur J Clin Pharmacol. 1990;38(3):289-91 - PubMed
  58. Arch Virol. 2021 Jan;166(1):91-100 - PubMed

Publication Types

Grant support