Display options
Share it on

Front Neurosci. 2021 Dec 09;15:720031. doi: 10.3389/fnins.2021.720031. eCollection 2021.

Cardiovagal Baroreflex Hysteresis Using Ellipses in Response to Postural Changes.

Frontiers in neuroscience

Babak Dabiri, Joana Brito, Eugenijus Kaniusas

Affiliations

  1. Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria.

PMID: 34955708 PMCID: PMC8695984 DOI: 10.3389/fnins.2021.720031

Abstract

The cardiovagal branch of the baroreflex is of high clinical relevance when detecting disturbances of the autonomic nervous system. The hysteresis of the baroreflex is assessed using provoked and spontaneous changes in blood pressure. We propose a novel ellipse analysis to characterize hysteresis of the spontaneous respiration-related cardiovagal baroreflex for orthostatic test. Up and down sequences of pressure changes as well as the working point of baroreflex are considered. The EuroBaVar data set for supine and standing was employed to extract heartbeat intervals and blood pressure values. The latter values formed polygons into which a bivariate normal distribution was fitted with its properties determining proposed ellipses of baroreflex. More than 80% of ellipses are formed out of nonoverlapping and delayed up and down sequences highlighting baroreflex hysteresis. In the supine position, the ellipses are more elongated (by about 46%) and steeper (by about 4.3° as median) than standing, indicating larger heart interval variability (70.7 versus 47.9 ms) and smaller blood pressure variability (5.8 versus 8.9 mmHg) in supine. The ellipses show a higher baroreflex sensitivity for supine (15.7 ms/mmHg as median) than standing (7 ms/mmHg). The center of the ellipse moves from supine to standing, which describes the overall sigmoid shape of the baroreflex with the moving working point. In contrast to regression analysis, the proposed method considers gain and set-point changes during respiration, offers instructive insights into the resulting hysteresis of the spontaneous cardiovagal baroreflex with respiration as stimuli, and provides a new tool for its future analysis.

Copyright © 2021 Dabiri, Brito and Kaniusas.

Keywords: autonomic nervous system; baroreflex sensitivity; cardiovagal baroreflex hysteresis; ellipse; orthostatic

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Am J Physiol Regul Integr Comp Physiol. 2004 Jan;286(1):R226-31 - PubMed
  2. Clin Exp Hypertens A. 1988;10 Suppl 1:179-91 - PubMed
  3. J Appl Physiol. 1964 May;19:479-82 - PubMed
  4. Am J Physiol. 1988 Feb;254(2 Pt 2):H377-83 - PubMed
  5. Cardiovasc Res. 1990 Aug;24(8):627-32 - PubMed
  6. Anesthesiology. 2019 Apr;130(4):634-650 - PubMed
  7. J Physiol. 2007 Sep 15;583(Pt 3):1041-8 - PubMed
  8. Circ Res. 1987 Nov;61(5):648-58 - PubMed
  9. Am J Physiol. 1997 Oct;273(4):H1629-36 - PubMed
  10. Acta Physiol (Oxf). 2013 May;208(1):66-73 - PubMed
  11. Clin Sci (Lond). 2002 Sep;103(3):221-6 - PubMed
  12. Am J Physiol. 1991 Oct;261(4 Pt 2):H1231-45 - PubMed
  13. J Physiol. 1999 Jun 1;517 ( Pt 2):617-28 - PubMed
  14. Circ Res. 1990 Jun;66(6):1499-509 - PubMed
  15. Physiol Meas. 2010 Jun;31(6):857-73 - PubMed
  16. J Hypertens. 1984 Apr;2(2):189-94 - PubMed
  17. Clin Physiol. 1993 Nov;13(6):663-76 - PubMed
  18. Ann Noninvasive Electrocardiol. 2008 Apr;13(2):191-207 - PubMed
  19. J Hypertens Suppl. 1985 Dec;3(3):S79-81 - PubMed
  20. Clin Physiol. 1990 Jul;10(4):389-401 - PubMed
  21. Am J Physiol Regul Integr Comp Physiol. 2019 Oct 1;317(4):R539-R551 - PubMed
  22. J Appl Physiol (1985). 2005 Jul;99(1):64-70 - PubMed
  23. Am J Physiol. 1993 Oct;265(4 Pt 2):H1310-7 - PubMed
  24. Exp Physiol. 2012 Jan;97(1):39-50 - PubMed
  25. J Physiol. 2017 Mar 15;595(6):2197-2198 - PubMed
  26. Front Physiol. 2011 Nov 07;2:80 - PubMed
  27. Am J Physiol. 1987 Sep;253(3 Pt 2):H680-9 - PubMed
  28. J Appl Physiol. 1969 Oct;27(4):465-70 - PubMed
  29. Hypertension. 1988 Aug;12(2):214-22 - PubMed
  30. Front Neurosci. 2019 Jan 23;13:17 - PubMed
  31. Acta Physiol (Oxf). 2014 Jun;211(2):297-313 - PubMed
  32. Am J Physiol. 1998 Nov;275(5):H1733-47 - PubMed
  33. Hypertension. 2001 Jun;37(6):1362-8 - PubMed
  34. J Physiol. 2019 Sep;597(18):4729-4741 - PubMed
  35. Lancet. 1998 Feb 14;351(9101):478-84 - PubMed
  36. PLoS One. 2017 Nov 16;12(11):e0188313 - PubMed
  37. Cardiovasc Res. 1973 Mar;7(2):213-9 - PubMed
  38. J Physiol. 2011 Jul 1;589(Pt 13):3395-404 - PubMed
  39. Am J Physiol. 1993 Dec;265(6 Pt 2):R1355-68 - PubMed
  40. Psychosom Med. 2003 Sep-Oct;65(5):796-805 - PubMed
  41. Med Biol Eng Comput. 2018 Jul;56(7):1241-1252 - PubMed
  42. Front Physiol. 2012 Aug 07;3:314 - PubMed
  43. Neurology. 2008 Nov 18;71(21):1733-8 - PubMed
  44. J Gravit Physiol. 2001 Dec;8(2):1-14 - PubMed
  45. J Appl Physiol (1985). 2009 Sep;107(3):718-24 - PubMed
  46. Am J Physiol Heart Circ Physiol. 2020 Oct 1;319(4):H787-H792 - PubMed
  47. Am J Physiol. 1999 May;276(5 Pt 2):H1691-8 - PubMed
  48. J Vasc Res. 2000 Mar-Apr;37(2):103-11 - PubMed
  49. Circ Res. 1969 Jan;24(1):109-21 - PubMed
  50. J Neurophysiol. 1996 Oct;76(4):2644-60 - PubMed

Publication Types