Display options
Share it on

Hypertens Res. 2021 Dec 27; doi: 10.1038/s41440-021-00835-7. Epub 2021 Dec 27.

Noninvasive method to validate the variability of blood pressure during arrhythmias.

Hypertension research : official journal of the Japanese Society of Hypertension

Tomonori Watanabe, Satoshi Hoshide, Kazuomi Kario

Affiliations

  1. Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan.
  2. Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan. [email protected].

PMID: 34961791 DOI: 10.1038/s41440-021-00835-7

[No abstract available.]

References

  1. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481. - PubMed
  2. Kario K, Chirinos JA, Townsend RR, Weber MA, Scuteri A, Avolio A, et al. Systemic hemodynamic atherothrombotic syndrome (SHATS) – coupling vascular disease and blood pressure variability: proposed concept from pulse of Asia. Prog Cardiovasc Dis. 2020;63:22–32. - PubMed
  3. Hoshide S. Clinical implication of visit-to-visit blood pressure variability. Hypertens Res. 2018;41:993–9. - PubMed
  4. Hoshide S, Yano Y, Mizuno H, Kanegae H, Kario K. Day-by-day variability of home blood pressure and incident cardiovascular disease in clinical practice: The J-HOP Study (Japan Morning Surge-Home Blood Pressure). Hypertension. 2018;71:177–84. - PubMed
  5. Mukkamala R, Hahn JO, Inan OT, Mestha LK, Kim CS, Töreyin H, et al. Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans Biomed Eng. 2015;62:1879–901. - PubMed
  6. Block RC, Yavarimanesh M, Natarajan K, Carek A, Mousavi A, Chandrasekhar A, et al. Conventional pulse transit times as markers of blood pressure changes in humans. Sci Rep. 2020;10:16373. - PubMed
  7. Miao F, Zhou B, Liu Z, Wen B, Li Y, Tang M. Using noninvasive adjusted pulse transit time for tracking beat-to-beat systolic blood pressure during ventricular arrhythmias. Hypertens Res. 2021. https://doi.org/10.1038/s41440-021-00795-y2 . - PubMed
  8. Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA. 2001;285:2864–70. - PubMed
  9. Bassand JP, Accetta G, Camm AJ, Cools F, Fitzmaurice DA, Fox KA, et al. Two-year outcomes of patients with newly diagnosed atrial fibrillation: results from GARFIELD-AF. Eur Heart J. 2016;37:2882–9. - PubMed
  10. Watanabe T, Tomitani N, Kario K. Perspectives on an ambulatory blood pressure monitoring device with novel technology for pulse waveform analysis to detect arrhythmias. J Clin Hypertens (Greenwich). 2020;22:1525–9. - PubMed
  11. Yang S, Morgan SP, Cho SY, Correia R, Wen L, Zhang Y. Non-invasive cuff-less blood pressure machine learning algorithm using photoplethysmography and prior physiological data. Blood Press Monit. 2021;26:312–20. - PubMed
  12. Koshimizu H, Kojima R, Okuno Y. Future possibilities for artificial intelligence in the practical management of hypertension. Hypertens Res. 2020;43:1327–37. - PubMed

Publication Types