Display options
Share it on

Exp Mech. 2021 Jan;61(1):235-251. doi: 10.1007/s11340-020-00662-w. Epub 2020 Oct 26.

Radiofrequency ablation alters the microstructural organization of healthy and enzymatically digested porcine mitral valves.

Experimental mechanics

J M Bender, W R Adams, A Mahadevan-Jansen, W D Merryman, M R Bersi

Affiliations

  1. Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.

PMID: 33776074 PMCID: PMC7992362 DOI: 10.1007/s11340-020-00662-w

Abstract

BACKGROUND: Myxomatous mitral valve degeneration is a common cause of mitral regurgitation and is often associated with mitral valve prolapse. With no known targets to pharmacologically treat mitral valve prolapse, surgery is often the only treatment option. Recently, radiofrequency ablation has been proposed as a percutaneous alternative to surgical resection for the reduction of mitral valve leaflet area.

OBJECTIVE: Using an in vitro model of porcine mitral valve anterior leaflet enlargement following enzymatic digestion, we sought to investigate mechanisms by which radiofrequency ablation alters the geometry, microstructural organization, and mechanical properties of healthy and digested leaflets.

METHODS: Paired measurements before and after ablation revealed the impact of radiofrequency ablation on leaflet properties. Multiphoton imaging was used to characterize changes in the structure and organization of the valvular extracellular matrix; planar biaxial mechanical testing and constitutive modeling were used to estimate mechanical properties of healthy and digested leaflets.

RESULTS: Enzymatic digestion increased leaflet area and thickness to a similar extent as clinical mitral valve disease. Radiofrequency ablation altered extracellular matrix alignment and reduced the area of digested leaflets to that of control. Additionally, enzymatic digestion resulted in fiber alignment and reorientation toward the radial direction, causing increased forces during ablation and a structural stiffening which was improved by radiofrequency ablation.

CONCLUSION: Radiofrequency ablation induces radial extracellular matrix alignment and effectively reduces the area of enlarged mitral valve leaflets. Hence, this technique may be a therapeutic approach for myxomatous mitral valve disease and is thus an avenue for future study.

Keywords: ablation; biaxial; mechanics; microscopy; mitral; multiphoton; percutaneous; prolapse; radiofrequency; therapy; valve

Conflict of interest statement

Conflict of Interest: The authors declare that they have no conflict of interest.

References

  1. J Geriatr Cardiol. 2015 Sep;12(5):547-54 - PubMed
  2. Ann Thorac Surg. 2006 Oct;82(4):1362-8 - PubMed
  3. J Biomech. 2014 Mar 21;47(5):973-80 - PubMed
  4. J Biomed Opt. 2014 Aug;19(8):086014 - PubMed
  5. Circulation. 2001 Nov 20;104(21):2525-32 - PubMed
  6. Herz. 2019 Nov 26;: - PubMed
  7. Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H2754-63 - PubMed
  8. J Thorac Cardiovasc Surg. 2001 Nov;122(5):955-62 - PubMed
  9. Acta Biomater. 2013 Jan;9(1):4653-60 - PubMed
  10. J Card Surg. 2020 Feb;35(2):390-396 - PubMed
  11. Circulation. 2008 Sep 30;118(14 Suppl):S243-9 - PubMed
  12. J Heart Valve Dis. 2010 Jan;19(1):60-70 - PubMed
  13. Biophys J. 2007 Oct 1;93(7):2472-6 - PubMed
  14. Biomech Model Mechanobiol. 2016 Dec;15(6):1467-1478 - PubMed
  15. J Comp Pathol. 2017 May;156(4):371-383 - PubMed
  16. Cardiovasc Ultrasound. 2016 Aug 15;14(1):32 - PubMed
  17. Ann Biomed Eng. 2012 Sep;40(9):1971-81 - PubMed
  18. Nat Rev Cardiol. 2015 Dec;12(12):689-710 - PubMed
  19. Circulation. 2013 Feb 19;127(7):832-41 - PubMed
  20. J Biomech Eng. 2007 Feb;129(1):78-87 - PubMed
  21. Am Heart J. 2004 Jul;148(1):144-50 - PubMed
  22. Arthroscopy. 2007 Mar;23(3):299-304 - PubMed
  23. J R Soc Interface. 2006 Feb 22;3(6):15-35 - PubMed
  24. Cardiovasc Pathol. 1999 Jul-Aug;8(4):191-201 - PubMed
  25. Biomech Model Mechanobiol. 2013 Oct;12(5):1053-71 - PubMed
  26. Neth Heart J. 2010 Sep;18(9):437-43 - PubMed
  27. J Biomech Eng. 2015 May;137(5):051001 - PubMed
  28. Prog Cardiovasc Dis. 2017 Nov - Dec;60(3):322-333 - PubMed
  29. Circulation. 2008 Feb 19;117(7):963-74 - PubMed
  30. Eur J Cardiothorac Surg. 2000 Mar;17(3):201-5 - PubMed
  31. Arthroscopy. 2001 Jul;17(6):613-9 - PubMed
  32. Lancet. 2009 Apr 18;373(9672):1382-94 - PubMed
  33. Biophys J. 2015 Apr 21;108(8):2074-87 - PubMed
  34. Cardiovasc Pathol. 2010 Jul-Aug;19(4):e113-7 - PubMed
  35. Bioengineering (Basel). 2019 May 07;6(2): - PubMed
  36. BMC Cardiovasc Disord. 2020 Jan 7;20(1):1 - PubMed
  37. N Engl J Med. 1999 Jul 1;341(1):1-7 - PubMed
  38. Arch Surg. 1984 Apr;119(4):405-9 - PubMed
  39. Am Heart J. 1995 Jun;129(6):1149-58 - PubMed
  40. J R Soc Interface. 2017 May;14(130): - PubMed
  41. Physiol Meas. 2014 Jan;35(1):55-67 - PubMed
  42. Ann Thorac Surg. 2016 Sep;102(3):703-710 - PubMed
  43. Circ J. 2017 Dec 25;82(1):93-101 - PubMed
  44. J Am Soc Echocardiogr. 2011 Apr;24(4):405-13 - PubMed
  45. Ann Biomed Eng. 2006 Feb;34(2):315-25 - PubMed
  46. Acta Biomater. 2020 Jan 15;102:100-113 - PubMed
  47. Ann Biomed Eng. 2016 Jul;44(7):2240-50 - PubMed
  48. J Appl Physiol (1985). 2009 Feb;106(2):423-31 - PubMed
  49. Cardiovasc Pathol. 2009 Jul-Aug;18(4):191-7 - PubMed

Publication Types

Grant support