Display options
Share it on

Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2112520118.

Complete biosynthesis of the bisbenzylisoquinoline alkaloids guattegaumerine and berbamunine in yeast.

Proceedings of the National Academy of Sciences of the United States of America

James T Payne, Timothy R Valentic, Christina D Smolke

Affiliations

  1. Department of Bioengineering, Stanford University, Stanford, CA 94305.
  2. Department of Bioengineering, Stanford University, Stanford, CA 94305; [email protected].
  3. Chan Zuckerberg Biohub, San Francisco, CA 94158.

PMID: 34903659 DOI: 10.1073/pnas.2112520118

Abstract

Benzylisoquinoline alkaloids (BIAs) are a diverse class of medicinal plant natural products. Nearly 500 dimeric bisbenzylisoquinoline alkaloids (bisBIAs), produced by the coupling of two BIA monomers, have been characterized and display a range of pharmacological properties, including anti-inflammatory, antitumor, and antiarrhythmic activities. In recent years, microbial platforms have been engineered to produce several classes of BIAs, which are rare or difficult to obtain from natural plant hosts, including protoberberines, morphinans, and phthalideisoquinolines. However, the heterologous biosyntheses of bisBIAs have thus far been largely unexplored. Here, we describe the engineering of yeast strains that produce the Type I bisBIAs guattegaumerine and berbamunine de novo. Through strain engineering, protein engineering, and optimization of growth conditions, a 10,000-fold improvement in the production of guattegaumerine, the major bisBIA pathway product, was observed. By replacing the cytochrome P450 used in the final coupling reaction with a chimeric variant, the product profile was inverted to instead produce solely berbamunine. Our highest titer engineered yeast strains produced 108 and 25 mg/L of guattegaumerine and berbamunine, respectively. Finally, the inclusion of two additional putative BIA biosynthesis enzymes, SiCNMT2 and NnOMT5, into our bisBIA biosynthetic strains enabled the production of two derivatives of bisBIA pathway intermediates de novo: magnocurarine and armepavine. The de novo heterologous biosyntheses of bisBIAs presented here provide the foundation for the production of additional medicinal bisBIAs in yeast.

Copyright © 2021 the Author(s). Published by PNAS.

Keywords: benzylisoquinoline alkaloids; bisbenzylisoquinoline alkaloids; metabolic engineering; plant natural products; protein engineering

Conflict of interest statement

Competing interest statement: C.D.S. is an inventor on a pending patent application and a founder and the CEO of Antheia, Inc.

References

  1. Weber C., Opatz T.. Bisbenzylisoquinoline Alkaloids. 2019. - PubMed
  2. Bisset N. G.. Arrow and dart poisons. J. Ethnopharmacol.. 1989;25:1–41. - PubMed
  3. Wastila W. B., Maehr R. B., Turner G. L., Hill D. A., Savarese J. J.. Comparative pharmacology of cisatracurium (51W89), atracurium, and five isomers in cats. Anesthesiology. 1996;85:169–177. - PubMed
  4. Wei G., Zhan-yun S., Chun-sheng L., Qiao-xian X.. Resource investigation of wild Stephania tetrandra in Anhui and Jiangxi Province. Zhonghua Zhongyiyao Zazhi. 2010;25:909–911. - PubMed
  5. Huang L. P., Liu X. Y., Li L. H.. Investigation of wild Stephania tetrandra resources in the south Anhui mountainous region. Res. Pract. Chin. Med.. 2008;22:22–24. - PubMed
  6. Qing Z., Wang D. Q.. Resources of medicinal plants menispermaceae in Anhui Province. J. Anhui Tradit. Chin. Med. Coll.. 2007;26:52–54. - PubMed
  7. Galanie S., Thodey K., Trenchard I. J., Interrante M. F., Smolke C. D.. Complete biosynthesis of opioids in yeast. Science. 2015;349:1095–1100. - PubMed
  8. Galanie S., Smolke C. D.. Optimization of yeast-based production of medicinal protoberberine alkaloids. Microb. Cell Fact.. 2015;14:144. - PubMed
  9. Li Y., et al. Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc. Natl. Acad. Sci. U.S.A.. 2018;115:E3922–E3931. - PubMed
  10. Valentic T. R., Payne J. T., Smolke C. D.. Structure-guided engineering of a scoulerine 9-O-methyltransferase enables the biosynthesis of tetrahydropalmatrubine and tetrahydropalmatine in yeast. ACS Catal.. 2020;10:4497–4509. - PubMed
  11. Hafner J., Payne J., MohammadiPeyhani H., Hatzimanikatis V., Smolke C.. A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives. Nat. Commun.. 2021;12:1760. - PubMed
  12. Kametani T., H. Iida, K. Sakurai . J. Chem. Soc. C. 1969. - PubMed
  13. Proskurnina N. F., Orekhov A. P.. Alkaloids of Magnolia fuscata. Bull. Soc. Chim. Fr. Mem.. 1938;5:1357–1360. - PubMed
  14. Sarraf M., Beig Babaei A., Naji-Tabasi S.. Investigating functional properties of barberry species: An overview. J. Sci. Food Agric.. 2019;99:5255–5269. - PubMed
  15. Dehaussy H., Tits M., Angenot L.. Guattegaumerine, new bisbenzylisoquinoline alkaloid from Guatteria gaumeri. Planta Med.. 1983;49:25–27. - PubMed
  16. Mokhber-Dezfuli N., Saeidnia S., Gohari A. R., Kurepaz-Mahmoodabadi M.. Phytochemistry and pharmacology of berberis species. Pharmacogn. Rev.. 2014;8:8–15. - PubMed
  17. Belwal T., et al. Phytopharmacology and clinical updates of Berberis species against diabetes and other metabolic diseases. Front. Pharmacol.. 2020;11:41. - PubMed
  18. Cortes D., Figadere B., Saez J., Protais P.. Displacement activity of bisbenzylisoquinoline alkaloids at striatal 3H-SCH 23390 and 3H-raclopride binding sites. J. Nat. Prod.. 1992;55:1281–1286. - PubMed
  19. Resendiz J. S., Lerdo de Tejada A.. Cholesterol-lowering effect of Guatteria gaumeri (preliminary report). J. Ethnopharmacol.. 1982;6:239–242. - PubMed
  20. Leclercq J., Quetin J., De Pauw-Gillet M. C., Bassleer R., Angenot L.. Antimitotic and cytotoxic activities of guattegaumerine, a bisbenzylisoquinoline alkaloid. Planta Med.. 1987;53:116–117. - PubMed
  21. Lü Q., et al. Guattegaumerine protects primary cultured cortical neurons against oxidative stress injury induced by hydrogen peroxide concomitant with serum deprivation. Cell. Mol. Neurobiol.. 2009;29:355–364. - PubMed
  22. Kametani T., Sakurai K., Iida H.. [Total synthesis of berbamunine and its diastereoisomer (studies on the synthesis of heterocyclic compounds. CCLIV)]. Yakugaku Zasshi. 1968;88:1163–1167. - PubMed
  23. Kametani T., Iida H., Sakurai K.. A total synthesis of magnoline. J. Chem. Soc. C Org.. 1969;3:500. - PubMed
  24. Kametani T., Iida H., Sakurai K., Kano S., Ihara M.. The nuclear magnetic resonance spectra and optical rotatory dispersion of berbamunine, magnoline, and two diastereomers. Chem. Pharm. Bull. (Tokyo). 1969;17:2120. - PubMed
  25. Gawley R. E., Smith G. A.. Formal synthesis of the bisbenzylisoquinoline alkaloid berbamunine by asymmetric substitution of chiral organolithium compounds. ARKIVOC. 2011;2011:167–179. - PubMed
  26. Stadler R., Zenk M. H.. The purification and characterization of a unique cytochrome P-450 enzyme from Berberis stolonifera plant cell cultures. J. Biol. Chem.. 1993;268:823–831. - PubMed
  27. Kraus P. F. X., Kutchan T. M.. Molecular cloning and heterologous expression of a cDNA encoding berbamunine synthase, a C–O phenol-coupling cytochrome P450 from the higher plant Berberis stolonifera. Proc. Natl. Acad. Sci. U.S.A.. 1995;92:2071–2075. - PubMed
  28. Trenchard I.. Engineering Saccharomyces cerevisiae for the Production of Plant-Derived Pharmaceuticals. 2014. - PubMed
  29. Rosco A., Pauli H. H., Priesner W., Kutchan T. M.. Cloning and heterologous expression of NADPH-cytochrome P450 reductases from the Papaveraceae. Arch. Biochem. Biophys.. 1997;348:369–377. - PubMed
  30. Ikezawa N., Iwasa K., Sato F.. Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C–C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells. J. Biol. Chem.. 2008;283:8810–8821. - PubMed
  31. Hawkins K. M., Smolke C. D.. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat. Chem. Biol.. 2008;4:564–573. - PubMed
  32. Farrow S. C., Hagel J. M., Beaudoin G. A., Burns D. C., Facchini P. J.. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nat. Chem. Biol.. 2015;11:728–732. - PubMed
  33. Winzer T., et al. Plant science. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein. Science. 2015;349:309–312. - PubMed
  34. Facchini P. J., Farrow S. C., Beaudoin G. A. W.. 2015. - PubMed
  35. Smolke C. D., Wells D. H.. 2020. - PubMed
  36. Xiao M., et al. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J. Biotechnol.. 2013;166:122–134. - PubMed
  37. Li Y., Smolke C. D.. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat. Commun.. 2016;7:12137. - PubMed
  38. Ogiu K., Morita M.. Curare-like action of magnocurarine isolated from Magnolia obovata. Jpn. J. Pharmacol.. 1953;2:89–96. - PubMed
  39. Weng T. C., et al. Inhibitory effects of armepavine against hepatic fibrosis in rats. J. Biomed. Sci.. 2009;16:78. - PubMed
  40. Menéndez-Perdomo I. M., Facchini P. J.. Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera). J. Biol. Chem.. 2020;295:1598–1612. - PubMed
  41. He S. M., et al. Identification and characterization of genes involved in benzylisoquinoline alkaloid biosynthesis in coptis species. Front. Plant Sci.. 2018;9:731. - PubMed
  42. Yang Z., et al. Dauricine induces apoptosis, inhibits proliferation and invasion through inhibiting NF-kappaB signaling pathway in colon cancer cells. J. Cell. Physiol.. 2010;225:266–275. - PubMed
  43. Stadler R., Loeffler S., Cassels B. K., Zenk M. H.. Bisbenzylisoquinoline biosynthesis in Berberis stolonifera cell cultures. Phytochemistry. 1988;27:2557–2565. - PubMed
  44. Gu M., et al. Crystal structure of CYP76AH1 in 4-PI-bound state from Salvia miltiorrhiza. Biochem. Biophys. Res. Commun.. 2019;511:813–819. - PubMed
  45. Nishimura K., Horii S., Tanahashi T., Sugimoto Y., Yamada J.. Synthesis and pharmacological activity of alkaloids from embryo of lotus, Nelumbo nucifera. Chem. Pharm. Bull. (Tokyo). 2013;61:59–68. - PubMed
  46. Uche F. I., et al. In vivo efficacy and metabolism of the antimalarial cycleanine and improved in vitro antiplasmodial activity of semisynthetic analogues. Antimicrob. Agents Chemother.. 2021;65:1–11. - PubMed
  47. Srinivasan P., Smolke C. D.. Engineering cellular metabolite transport for biosynthesis of computationally predicted tropane alkaloid derivatives in yeast. Proc. Natl. Acad. Sci. U.S.A.. 2021;118:e2104460118. - PubMed
  48. Sievers F., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol.. 2011;7:539. - PubMed
  49. Goujon M., et al. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res.. 2010;38:W695–W699. - PubMed
  50. Robert X., Gouet P.. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res.. 2014;42:W320–W324. - PubMed
  51. Wang S., Li W., Liu S., Xu J.. RaptorX-Property: A web server for protein structure property prediction. Nucleic Acids Res.. 2016;44:W430–W435. - PubMed
  52. Bomati E. K., Austin M. B., Bowman M. E., Dixon R. A., Noel J. P.. Structural elucidation of chalcone reductase and implications for deoxychalcone biosynthesis. J. Biol. Chem.. 2005;280:30496–30503. - PubMed

Publication Types

Grant support