Display options
Share it on

Curr Top Microbiol Immunol. 2021;432:89-120. doi: 10.1007/978-3-030-83391-6_9.

Interactions of Extracellular Vesicles from Pathogenic Fungi with Innate Leukocytes.

Current topics in microbiology and immunology

Mateus Silveira Freitas, Andre Moreira Pessoni, Carolina Coelho, Vânia Luiza Deperon Bonato, Marcio L Rodrigues, Arturo Casadevall, Fausto Almeida

Affiliations

  1. Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, SP, Brazil.
  2. MRC Centre for Medical Mycology, University of Exeter, Exeter, UK.
  3. Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.
  4. Instituto de Microbiologia Paulo de Góes (UFRJ), Rio de Janeiro, Brazil.
  5. Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
  6. Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, SP, Brazil. [email protected].

PMID: 34972881 DOI: 10.1007/978-3-030-83391-6_9

Abstract

Several studies have shown the immunomodulatory effects of extracellular vesicles (EVs) released by pathogenic fungi. Herein, we discuss the data regarding the immunomodulatory properties of fungal EVs, but also of EVs produced by infected leukocytes. This characterizes a two-way path, in which both host and fungal EVs could coexist and play crucial roles in disease progression or protection in fungal infections. We suggest that EVs can dictate the progress of fungal diseases, and their potential as therapeutic targets.

© 2021. Springer Nature Switzerland AG.

References

  1. Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A, Zancope-Oliveira RM et al (2008) Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol 10(8):1695–1710 - PubMed
  2. Almeida F, Wolf JM, da Silva TA, DeLeon-Rodriguez CM, Rezende CP, Pessoni AM et al (2017) Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects. Nat Commun 8(1):1968 - PubMed
  3. Almeida F, Rodrigues ML, Coelho C (2019) The still underestimated problem of fungal diseases worldwide. Front Microbiol 10:214 - PubMed
  4. Alvarez-Jimenez VD, Leyva-Paredes K, Garcia-Martinez M, Vazquez-Flores L, Garcia-Paredes VG, Campillo-Navarro M et al (2018) Extracellular vesicles released from Mycobacterium tuberculosis-infected neutrophils promote macrophage autophagy and decrease intracellular mycobacterial survival. Front Immunol 9:272 - PubMed
  5. Andriantsitohaina R, Papon N (2020) Extracellular vesicles: new bullets to fight fungal infections. Trends Cell Biol 30(8):589–590 - PubMed
  6. Baltazar LM, Zamith-Miranda D, Burnet MC, Choi H, Nimrichter L, Nakayasu ES et al (2018) Concentration-dependent protein loading of extracellular vesicles released by Histoplasma capsulatum after antibody treatment and its modulatory action upon macrophages. Sci Rep 8(1):8065 - PubMed
  7. Barbosa FM, Fonseca FL, Figueiredo RT, Bozza MT, Casadevall A, Nimrichter L et al (2007) Binding of glucuronoxylomannan to the CD14 receptor in human A549 alveolar cells induces interleukin-8 production. Clin Vaccine Immunol 14(1):94–98 - PubMed
  8. Benard G (2008) An overview of the immunopathology of human paracoccidioidomycosis. Mycopathologia 165(4–5):209–221 - PubMed
  9. Beyhan S, Sil A (2019) Sensing the heat and the host: virulence determinants of Histoplasma capsulatum. Virulence 10(1):793–800 - PubMed
  10. Bhatnagar S, Schorey JS (2007) Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. J Biol Chem 282(35):25779–25789 - PubMed
  11. Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS (2007) Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 110(9):3234–3244 - PubMed
  12. Bielska E, May RC (2019) Extracellular vesicles of human pathogenic fungi. Curr Opin Microbiol 52:90–99 - PubMed
  13. Bielska E, Sisquella MA, Aldeieg M, Birch C, O’Donoghue EJ, May RC (2018) Pathogen-derived extracellular vesicles mediate virulence in the fatal human pathogen Cryptococcus gattii. Nat Commun 9(1):1556 - PubMed
  14. Bitencourt TA, Rezende CP, Quaresemin NR, Moreno P, Hatanaka O, Rossi A et al (2018) Extracellular vesicles from the dermatophyte trichophyton interdigitale modulate macrophage and keratinocyte functions. Front Immunol 9:2343 - PubMed
  15. Boral H, Metin B, Dogen A, Seyedmousavi S, Ilkit M (2018) Overview of selected virulence attributes in aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genet Biol 111:92–107 - PubMed
  16. Braga CJ, Rittner GM, Munoz Henao JE, Teixeira AF, Massis LM, Sbrogio-Almeida ME et al (2009) Paracoccidioides brasiliensis vaccine formulations based on the gp43-derived P10 sequence and the Salmonella enterica FliC flagellin. Infect Immun 77(4):1700–1707 - PubMed
  17. Brauer VS, Pessoni AM, Bitencourt TA, de Paula RG, de Oliveira Rocha L, Goldman GH et al (2020) Extracellular vesicles from aspergillus flavus induce M1 polarization in vitro. mSphere 5(3):e00190-20 - PubMed
  18. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4(165):165rv13 - PubMed
  19. Brunke S, Mogavero S, Kasper L, Hube B (2016) Virulence factors in fungal pathogens of man. Curr Opin Microbiol 32:89–95 - PubMed
  20. Camacho E, Nino-Vega GA (2017) Paracoccidioides spp.: virulence factors and immune-evasion strategies. Mediat Inflamm 2017:5313691 - PubMed
  21. Casadevall A, Coelho C, Cordero RJB, Dragotakes Q, Jung E, Vij R et al (2019) The capsule of Cryptococcus neoformans. Virulence 10(1):822–831 - PubMed
  22. Cassone A, Casadevall A (2012) Recent progress in vaccines against fungal diseases. Curr Opin Microbiol 15(4):427–433 - PubMed
  23. Chakrabarti A, Bonifaz A, Gutierrez-Galhardo MC, Mochizuki T, Li S (2015) Global epidemiology of sporotrichosis. Med Mycol 53(1):3–14 - PubMed
  24. Chang CC, Sorrell TC, Chen SC (2015) Pulmonary cryptococcosis. Semin Respir Crit Care Med 36(5):681–691 - PubMed
  25. Cheng Y, Schorey JS (2013) Exosomes carrying mycobacterial antigens can protect mice against Mycobacterium tuberculosis infection. Eur J Immunol 43(12):3279–3290 - PubMed
  26. Choudhuri K, Llodra J, Roth EW, Tsai J, Gordo S, Wucherpfennig KW et al (2014) Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507(7490):118–123 - PubMed
  27. Cleare LG, Zamith D, Heyman HM, Couvillion SP, Nimrichter L, Rodrigues ML et al (2020) Media matters! Alterations in the loading and release of Histoplasma capsulatum extracellular vesicles in response to different nutritional milieus. Cell Microbiol 22(9):e13217 - PubMed
  28. Colombo AC, Rella A, Normile T, Joffe LS, Tavares PM, de SAGR et al (2019) Cryptococcus neoformans glucuronoxylomannan and sterylglucoside are required for host protection in an animal vaccination model. MBio 10(2):e02909-18 - PubMed
  29. da Silva TA, Roque-Barreira MC, Casadevall A, Almeida F (2016) Extracellular vesicles from Paracoccidioides brasiliensis induced M1 polarization in vitro. Sci Rep 6:35867 - PubMed
  30. de Beer ZW, Duong TA, Wingfield MJ (2016) The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship. Stud Mycol 83:165–191 - PubMed
  31. de Quaglia ESJC, Della Coletta AM, Gardizani TP, Romagnoli GG, Kaneno R, Dias-Melicio LA (2019) Involvement of the dectin-1 receptor upon the effector mechanisms of human phagocytic cells against Paracoccidioides brasiliensis. J Immunol Res 2019:1529189 - PubMed
  32. Decote-Ricardo D, LaRocque-de-Freitas IF, Rocha JDB, Nascimento DO, Nunes MP, Morrot A et al (2019) Immunomodulatory role of capsular polysaccharides constituents of Cryptococcus neoformans. Front Med (Lausanne) 6:129 - PubMed
  33. Di Meglio P, Perera GK, Nestle FO (2011) The multitasking organ: recent insights into skin immune function. Immunity 35(6):857–869 - PubMed
  34. Ehlers MR (2000) CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect 2(3):289–294 - PubMed
  35. Eisenman HC, Frases S, Nicola AM, Rodrigues ML, Casadevall A (2009) Vesicle-associated melanization in Cryptococcus neoformans. Microbiology 155(Pt 12):3860–3867 - PubMed
  36. Esher SK, Zaragoza O, Alspaugh JA (2018) Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain. Mem Inst Oswaldo Cruz 113(7):e180057 - PubMed
  37. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA et al (2013) Topographic diversity of fungal and bacterial communities in human skin. Nature 498(7454):367–370 - PubMed
  38. Fisher JF, Valencia-Rey PA, Davis WB (2016) Pulmonary Cryptococcosis in the immunocompetent patient-many questions, some answers. Open Forum Infect Dis 3(3):ofw167 - PubMed
  39. Flavia Popi AF, Lopes JD, Mariano M (2002) GP43 from Paracoccidioides brasiliensis inhibits macrophage functions. An evasion mechanism of the fungus. Cell Immunol 218(1–2):87–94 - PubMed
  40. Freitas MS, Bonato VLD, Pessoni AM, Rodrigues ML, Casadevall A, Almeida F (2019) Fungal extracellular vesicles as potential targets for immune interventions. mSphere 4(6):e00747-19 - PubMed
  41. Gardizani TP, Della Coletta AM, Romagnoli GG, Puccia R, Serezani APM, de Campos Soares AMV et al (2019) 43 kDa glycoprotein (gp43) from Paracoccidioides brasiliensis induced IL-17A and PGE2 production by human polymorphonuclear neutrophils: involvement of TLR2 and TLR4. J Immunol Res 2019:1790908 - PubMed
  42. Gehrmann U, Qazi KR, Johansson C, Hultenby K, Karlsson M, Lundeberg L et al (2011) Nanovesicles from Malassezia sympodialis and host exosomes induce cytokine responses--novel mechanisms for host-microbe interactions in atopic eczema. PLoS One 6(7):e21480 - PubMed
  43. Gil-Bona A, Llama-Palacios A, Parra CM, Vivanco F, Nombela C, Monteoliva L et al (2015) Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans. J Proteome Res 14(1):142–153 - PubMed
  44. Giri PK, Schorey JS (2008) Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo. PLoS One 3(6):e2461 - PubMed
  45. Giri PK, Kruh NA, Dobos KM, Schorey JS (2010) Proteomic analysis identifies highly antigenic proteins in exosomes from M. tuberculosis-infected and culture filtrate protein-treated macrophages. Proteomics 10(17):3190–3202 - PubMed
  46. Goyal S, Castrillon-Betancur JC, Klaile E, Slevogt H (2018) The interaction of human pathogenic fungi with C-type lectin receptors. Front Immunol 9:1261 - PubMed
  47. Gremiao ID, Miranda LH, Reis EG, Rodrigues AM, Pereira SA (2017) Zoonotic epidemic of sporotrichosis: cat to human transmission. PLoS Pathog 13(1):e1006077 - PubMed
  48. Gropp K, Schild L, Schindler S, Hube B, Zipfel PF, Skerka C (2009) The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol Immunol 47(2–3):465–475 - PubMed
  49. Guimaraes AJ, Frases S, Gomez FJ, Zancope-Oliveira RM, Nosanchuk JD (2009) Monoclonal antibodies to heat shock protein 60 alter the pathogenesis of Histoplasma capsulatum. Infect Immun 77(4):1357–1367 - PubMed
  50. Habich C, Kempe K, Gomez FJ, Lillicrap M, Gaston H, van der Zee R et al (2006) Heat shock protein 60: identification of specific epitopes for binding to primary macrophages. FEBS Lett 580(1):115–120 - PubMed
  51. Hai TP, Tuan TL, Anh DV, Mai TN, Huong LNP, Thwaites GE et al (2020) The virulence of the Cryptococcus neoformans VNIa-5 lineage is highly plastic and associated with isolate background. bioRxiv - PubMed
  52. Halder LD, Jo EAH, Hasan MZ, Ferreira-Gomes M, Kruger T, Westermann M et al (2020) Immune modulation by complement receptor 3-dependent human monocyte TGF-beta1-transporting vesicles. Nat Commun 11(1):2331 - PubMed
  53. Hanel KH, Cornelissen C, Luscher B, Baron JM (2013) Cytokines and the skin barrier. Int J Mol Sci 14(4):6720–6745 - PubMed
  54. Harada K, Saito M, Sugita T, Tsuboi R (2015) Malassezia species and their associated skin diseases. J Dermatol 42(3):250–257 - PubMed
  55. Hatanaka O, Rezende CP, Moreno P, Freitas Fernandes F, Oliveira Brito PKM, Martinez R et al (2019) Galectin-3 inhibits Paracoccidioides brasiliensis growth and impacts paracoccidioidomycosis through multiple mechanisms. mSphere 4(2) - PubMed
  56. Hofs S, Mogavero S, Hube B (2016) Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. J Microbiol 54(3):149–169 - PubMed
  57. Hohl TM (2017) Immune responses to invasive aspergillosis: new understanding and therapeutic opportunities. Curr Opin Infect Dis 30(4):364–371 - PubMed
  58. Huang SH, Wu CH, Chang YC, Kwon-Chung KJ, Brown RJ, Jong A (2012) Cryptococcus neoformans-derived microvesicles enhance the pathogenesis of fungal brain infection. PLoS One 7(11):e48570 - PubMed
  59. Huang HR, Li F, Han H, Xu X, Li N, Wang S et al (2018) Dectin-3 recognizes glucuronoxylomannan of Cryptococcus neoformans Serotype AD and Cryptococcus gattii serotype B to initiate host defense against Cryptococcosis. Front Immunol 9:1781 - PubMed
  60. Ikeda MAK, de Almeida JRF, Jannuzzi GP, Cronemberger-Andrade A, Torrecilhas ACT, Moretti NS et al (2018) Extracellular vesicles from Sporothrix brasiliensis are an important virulence factor that induce an increase in fungal burden in experimental sporotrichosis. Front Microbiol 9:2286 - PubMed
  61. Joffe LS, Nimrichter L, Rodrigues ML, Del Poeta M (2016) Potential roles of fungal extracellular vesicles during infection. mSphere 1(4) - PubMed
  62. Johansson HJ, Vallhov H, Holm T, Gehrmann U, Andersson A, Johansson C et al (2018) Extracellular nanovesicles released from the commensal yeast Malassezia sympodialis are enriched in allergens and interact with cells in human skin. Sci Rep 8(1):9182 - PubMed
  63. Kanj A, Abdallah N, Soubani AO (2018) The spectrum of pulmonary aspergillosis. Respir Med 141:121–131 - PubMed
  64. Kenno S, Speth C, Rambach G, Binder U, Chatterjee S, Caramalho R et al (2018) Candida albicans factor H binding molecule Hgt1p - a low glucose-induced transmembrane protein is trafficked to the cell wall and impairs phagocytosis and killing by human neutrophils. Front Microbiol 9:3319 - PubMed
  65. Kim J, Sudbery P (2011) Candida albicans, a major human fungal pathogen. J Microbiol 49(2):171–177 - PubMed
  66. Konecna K, Klimentova J, Benada O, Nemeckova I, Jandourek O, Jilek P et al (2019) A comparative analysis of protein virulence factors released via extracellular vesicles in two Candida albicans strains cultivated in a nutrient-limited medium. Microb Pathog 136:103666 - PubMed
  67. Konno FT, Maricato J, Konno AY, Guereschi MG, Vivanco BC, Feitosa Ldos S et al (2012) Paracoccidioides brasiliensis GP43-derived peptides are potent modulators of local and systemic inflammatory response. Microbes Infect 14(6):517–527 - PubMed
  68. Kopp A, Hebecker M, Svobodova E, Jozsi M (2012) Factor h: a complement regulator in health and disease, and a mediator of cellular interactions. Biomol Ther 2(1):46–75 - PubMed
  69. Kroetz DN, Deepe GS (2012) The role of cytokines and chemokines in Histoplasma capsulatum infection. Cytokine 58(1):112–117 - PubMed
  70. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR et al (2017) The case for adopting the “species complex” nomenclature for the etiologic agents of cryptococcosis. mSphere 2(1) - PubMed
  71. Latge JP, Chamilos G (2019) Aspergillus fumigatus and Aspergillosis in 2019. Clin Microbiol Rev 33(1):e00140-18 - PubMed
  72. Leopold Wager CM, Wormley FL Jr (2014) Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunol 7(5):1023–1035 - PubMed
  73. Levitz SM (2002) Receptor-mediated recognition of Cryptococcus neoformans. Nippon Ishinkin Gakkai Zasshi 43(3):133–136 - PubMed
  74. Limper AH, Adenis A, Le T, Harrison TS (2017) Fungal infections in HIV/AIDS. Lancet Infect Dis 17(11):e334–ee43 - PubMed
  75. Liu Y, Filler SG (2011) Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10(2):168–173 - PubMed
  76. Long KH, Gomez FJ, Morris RE, Newman SL (2003) Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that mediates binding to CD18 receptors on human macrophages. J Immunol 170(1):487–494 - PubMed
  77. Lyck R, Enzmann G (2015) The physiological roles of ICAM-1 and ICAM-2 in neutrophil migration into tissues. Curr Opin Hematol 22(1):53–59 - PubMed
  78. Majorek KA, Porebski PJ, Dayal A, Zimmerman MD, Jablonska K, Stewart AJ et al (2012) Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol Immunol 52(3–4):174–182 - PubMed
  79. Marques AF, da Silva MB, Juliano MA, Munhoz JE, Travassos LR, Taborda CP (2008) Additive effect of P10 immunization and chemotherapy in anergic mice challenged intratracheally with virulent yeasts of Paracoccidioides brasiliensis. Microbes Infect 10(12–13):1251–1258 - PubMed
  80. Martinez R (2015) Epidemiology of paracoccidioidomycosis. Rev Inst Med Trop Sao Paulo 57(Suppl 19):11–20 - PubMed
  81. Matos Baltazar L, Nakayasu ES, Sobreira TJ, Choi H, Casadevall A, Nimrichter L et al (2016) Antibody binding alters the characteristics and contents of extracellular vesicles released by Histoplasma capsulatum. mSphere 1(2) - PubMed
  82. May RC, Stone NR, Wiesner DL, Bicanic T, Nielsen K (2016) Cryptococcus: from environmental saprophyte to global pathogen. Nat Rev Microbiol 14(2):106–117 - PubMed
  83. Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4(2):119–128 - PubMed
  84. Maziarz EK, Perfect JR (2016) Cryptococcosis. Infect Dis Clin N Am 30(1):179–206 - PubMed
  85. Mendes RP, Cavalcante RS, Marques SA, Marques MEA, Venturini J, Sylvestre TF et al (2017) Paracoccidioidomycosis: current perspectives from Brazil. Open Microbiol J 11:224–282 - PubMed
  86. Mendes-Giannini MJ, Taylor ML, Bouchara JB, Burger E, Calich VL, Escalante ED et al (2000) Pathogenesis II: fungal responses to host responses: interaction of host cells with fungi. Med Mycol 38(Suppl 1):113–123 - PubMed
  87. Mendes-Giannini MJ, Andreotti PF, Vincenzi LR, da Silva JL, Lenzi HL, Benard G et al (2006) Binding of extracellular matrix proteins to Paracoccidioides brasiliensis. Microbes Infect 8(6):1550–1559 - PubMed
  88. Mihu MR, Nosanchuk JD (2012) Histoplasma virulence and host responses. Int J Microbiol 2012:268123 - PubMed
  89. Monari C, Pericolini E, Bistoni G, Casadevall A, Kozel TR, Vecchiarelli A (2005) Cryptococcus neoformans capsular glucuronoxylomannan induces expression of fas ligand in macrophages. J Immunol 174(6):3461–3468 - PubMed
  90. Monari C, Bistoni F, Vecchiarelli A (2006) Glucuronoxylomannan exhibits potent immunosuppressive properties. FEMS Yeast Res 6(4):537–542 - PubMed
  91. Monika S, Malgorzata B, Zbigniew O (2017) Contribution of aspartic proteases in Candida virulence. Protease inhibitors against Candida infections. Curr Protein Pept Sci 18(10):1050–1062 - PubMed
  92. Moreira JA, Freitas DF, Lamas CC (2015) The impact of sporotrichosis in HIV-infected patients: a systematic review. Infection 43(3):267–276 - PubMed
  93. Moyes DL, Richardson JP, Naglik JR (2015) Candida albicans-epithelial interactions and pathogenicity mechanisms: scratching the surface. Virulence 6(4):338–346 - PubMed
  94. Muldoon EG, Strek ME, Patterson KC (2017) Allergic and noninvasive infectious pulmonary aspergillosis syndromes. Clin Chest Med 38(3):521–534 - PubMed
  95. Munoz JE, Luft VD, Amorim J, Magalhaes A, Thomaz L, Nosanchuk JD et al (2014) Immunization with P10 peptide increases specific immunity and protects immunosuppressed BALB/c mice infected with virulent yeasts of Paracoccidioides brasiliensis. Mycopathologia 178(3–4):177–188 - PubMed
  96. Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67(3):400–428 - PubMed
  97. Nakaira-Takahagi E, Golim MA, Bannwart CF, Puccia R, Peracoli MT (2011) Interactions between TLR2, TLR4, and mannose receptors with gp43 from Paracoccidioides brasiliensis induce cytokine production by human monocytes. Med Mycol 49(7):694–703 - PubMed
  98. Nenoff P, Kruger C, Ginter-Hanselmayer G, Tietz HJ (2014) Mycology - an update. Part 1: dermatomycoses: causative agents, epidemiology and pathogenesis. J Dtsch Dermatol Ges 12(3):188–209. quiz 10, 188–211; quiz 2 - PubMed
  99. Nobile CJ, Johnson AD (2015) Candida albicans biofilms and human disease. Annu Rev Microbiol 69:71–92 - PubMed
  100. Nowicka D, Nawrot U (2019) Contribution of Malassezia spp. to the development of atopic dermatitis. Mycoses 62(7):588–596 - PubMed
  101. Oliveira DL, Freire-de-Lima CG, Nosanchuk JD, Casadevall A, Rodrigues ML, Nimrichter L (2010) Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect Immun 78(4):1601–1609 - PubMed
  102. O’Meara TR, Alspaugh JA (2012) The Cryptococcus neoformans capsule: a sword and a shield. Clin Microbiol Rev 25(3):387–408 - PubMed
  103. Pasqualotto AC (2009) Differences in pathogenicity and clinical syndromes due to aspergillus fumigatus and aspergillus flavus. Med Mycol 47(Suppl 1):S261–S270 - PubMed
  104. Pereira TC, de Barros PP, Fugisaki LRO, Rossoni RD, Ribeiro FC, de Menezes RT et al (2018) Recent advances in the use of Galleria mellonella model to study immune responses against human pathogens. J Fungi (Basel) 4(4):128 - PubMed
  105. Peres da Silva R, Heiss C, Black I, Azadi P, Gerlach JQ, Travassos LR et al (2015) Extracellular vesicles from Paracoccidioides pathogenic species transport polysaccharide and expose ligands for DC-SIGN receptors. Sci Rep 5:14213 - PubMed
  106. Pietrella D, Rachini A, Pandey N, Schild L, Netea M, Bistoni F et al (2010) The inflammatory response induced by aspartic proteases of Candida albicans is independent of proteolytic activity. Infect Immun 78(11):4754–4762 - PubMed
  107. Puccia R, Travassos LR (1991) 43-kilodalton glycoprotein from Paracoccidioides brasiliensis: immunochemical reactions with sera from patients with paracoccidioidomycosis, histoplasmosis, or Jorge Lobo’s disease. J Clin Microbiol 29(8):1610–1615 - PubMed
  108. Puccia R, Vallejo MC, Longo LVG (2017) The cell wall-associated proteins in the dimorphic pathogenic species of Paracoccidioides. Curr Protein Pept Sci 18(11):1074–1089 - PubMed
  109. Queiroz-Telles F, Fahal AH, Falci DR, Caceres DH, Chiller T, Pasqualotto AC (2017) Neglected endemic mycoses. Lancet Infect Dis 17(11):e367–e377 - PubMed
  110. Reales-Calderón JA, Vaz C, Monteoliva L, Molero G, Gil C (2017) Candida albicans modifies the protein composition and size distribution of THP-1 macrophage-derived extracellular vesicles. J Proteome Res 16(1):87–105 - PubMed
  111. Retini C, Kozel TR, Pietrella D, Monari C, Bistoni F, Vecchiarelli A (2001) Interdependency of interleukin-10 and interleukin-12 in regulation of T-cell differentiation and effector function of monocytes in response to stimulation with Cryptococcus neoformans. Infect Immun 69(10):6064–6073 - PubMed
  112. Rizzo J, Rodrigues ML, Janbon G (2020a) Extracellular vesicles in fungi: past, present, and future perspectives. Front Cell Infect Microbiol 10:346 - PubMed
  113. Rizzo J, Wong SSW, Gazi AD, Moyrand F, Chaze T, Commere PH et al (2020b) New insights into Cryptococcus extracellular vesicles suggest a new structural model and an antifungal vaccine strategy. bioRxiv - PubMed
  114. Rodrigues ML, Casadevall A (2018) A two-way road: novel roles for fungal extracellular vesicles. Mol Microbiol 110(1):11–15 - PubMed
  115. Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O et al (2007) Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell 6(1):48–59 - PubMed
  116. Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC et al (2008) Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 7(1):58–67 - PubMed
  117. Rodrigues ML, Nakayasu ES, Almeida IC, Nimrichter L (2014) The impact of proteomics on the understanding of functions and biogenesis of fungal extracellular vesicles. J Proteome 97:177–186 - PubMed
  118. Rodrigues M, Fan J, Lyon C, Wan M, Hu Y (2018) Role of extracellular vesicles in viral and bacterial infections: pathogenesis, diagnostics, and therapeutics. Theranostics 8(10):2709–2721 - PubMed
  119. Rodríguez Molina LM, Tobón Orozco AM (2018) Paracoccidioidomycosis: global vision of a forgotten endemic mycosis. Curr Trop Med Rep 5(3):138–143 - PubMed
  120. Santos LA, Grisolia JC, Burger E, de Araujo Paula FB, Dias ALT, Malaquias LCC (2020) Virulence factors of Paracoccidioides brasiliensis as therapeutic targets: a review. Antonie Van Leeuwenhoek 113(5):593–604 - PubMed
  121. Saunders CW, Scheynius A, Heitman J (2012) Malassezia fungi are specialized to live on skin and associated with dandruff, eczema, and other skin diseases. PLoS Pathog 8(6):e1002701 - PubMed
  122. Schaller M, Borelli C, Korting HC, Hube B (2005) Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48(6):365–377 - PubMed
  123. Schulze J, Sonnenborn U (2009) Yeasts in the gut: from commensals to infectious agents. Dtsch Arztebl Int 106(51–52):837–842 - PubMed
  124. Shen Q, Rappleye CA (2017) Differentiation of the fungus Histoplasma capsulatum into a pathogen of phagocytes. Curr Opin Microbiol 40:1–7 - PubMed
  125. Shopova IA, Belyaev I, Dasari P, Jahreis S, Stroe MC, Cseresnyés Z et al (2020) Human neutrophils produce antifungal extracellular vesicles against Aspergillus fumigatus. Am Soc Microbiol 11(2):e00596-20 - PubMed
  126. Singh PP, Smith VL, Karakousis PC, Schorey JS (2012) Exosomes isolated from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo. J Immunol 189(2):777–785 - PubMed
  127. Singh DK, Toth R, Gacser A (2020) Mechanisms of pathogenic Candida species to evade the host complement attack. Front Cell Infect Microbiol 10:94 - PubMed
  128. Souza JAM, Baltazar LM, Carregal VM, Gouveia-Eufrasio L, de Oliveira AG, Dias WG et al (2019) Characterization of Aspergillus fumigatus extracellular vesicles and their effects on macrophages and neutrophils functions. Front Microbiol 10:2008 - PubMed
  129. Spellberg BJ, Ibrahim AS, Avanesian V, Fu Y, Myers C, Phan QT et al (2006) Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J Infect Dis 194(2):256–260 - PubMed
  130. Srikanta D, Santiago-Tirado FH, Doering TL (2014) Cryptococcus neoformans: historical curiosity to modern pathogen. Yeast 31(2):47–60 - PubMed
  131. Straus AH, Freymuller E, Travassos LR, Takahashi HK (1996) Immunochemical and subcellular localization of the 43 kDa glycoprotein antigen of Paracoccidioides brasiliensis with monoclonal antibodies. J Med Vet Mycol 34(3):181–186 - PubMed
  132. Sugui JA, Kwon-Chung KJ, Juvvadi PR, Latge JP, Steinbach WJ (2014) Aspergillus fumigatus and related species. Cold Spring Harb Perspect Med 5(2):a019786 - PubMed
  133. Torres I, Hernandez O, Tamayo D, Munoz JF, Leitao NP Jr, Garcia AM et al (2013) Inhibition of PbGP43 expression may suggest that gp43 is a virulence factor in Paracoccidioides brasiliensis. PLoS One 8(7):e68434 - PubMed
  134. Vallejo MC, Matsuo AL, Ganiko L, Medeiros LC, Miranda K, Silva LS et al (2011) The pathogenic fungus Paracoccidioides brasiliensis exports extracellular vesicles containing highly immunogenic alpha-Galactosyl epitopes. Eukaryot Cell 10(3):343–351 - PubMed
  135. Vallejo MC, Nakayasu ES, Matsuo AL, Sobreira TJ, Longo LV, Ganiko L et al (2012) Vesicle and vesicle-free extracellular proteome of Paracoccidioides brasiliensis: comparative analysis with other pathogenic fungi. J Proteome Res 11(3):1676–1685 - PubMed
  136. Vallhov H, Johansson C, Veerman RE, Scheynius A (2020) Extracellular vesicles released from the skin commensal yeast Malassezia sympodialis activate human primary keratinocytes. Front Cell Infect Microbiol 10:6 - PubMed
  137. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228 - PubMed
  138. Vargas G, Rocha JD, Oliveira DL, Albuquerque PC, Frases S, Santos SS et al (2015) Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol 17(3):389–407 - PubMed
  139. Vargas G, Honorato L, Guimaraes AJ, Rodrigues ML, Reis FCG, Vale AM et al (2020) Protective effect of fungal extracellular vesicles against murine candidiasis. Cell Microbiol:e13238 - PubMed
  140. Vicentini AP, Gesztesi JL, Franco MF, de Souza W, de Moraes JZ, Travassos LR et al (1994) Binding of Paracoccidioides brasiliensis to laminin through surface glycoprotein gp43 leads to enhancement of fungal pathogenesis. Infect Immun 62(4):1465–1469 - PubMed
  141. Villena SN, Pinheiro RO, Pinheiro CS, Nunes MP, Takiya CM, DosReis GA et al (2008) Capsular polysaccharides galactoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand. Cell Microbiol 10(6):1274–1285 - PubMed
  142. Walling BL, Kim M (2018) LFA-1 in T cell migration and differentiation. Front Immunol 9:952 - PubMed
  143. Wang J, Yao Y, Chen X, Wu J, Gu T, Tang X (2018) Host derived exosomes-pathogens interactions: potential functions of exosomes in pathogen infection. Biomed Pharmacother 108:1451–1459 - PubMed
  144. Witherden EA, Shoaie S, Hall RA, Moyes DL (2017) The human mucosal mycobiome and fungal community interactions. J Fungi (Basel) 3(4) - PubMed
  145. Wolf JM, Rivera J, Casadevall A (2012) Serum albumin disrupts Cryptococcus neoformans and Bacillus anthracis extracellular vesicles. Cell Microbiol 14(5):762–773 - PubMed
  146. Wolf JM, Espadas J, Luque-Garcia J, Reynolds T, Casadevall A (2015) Lipid biosynthetic genes affect Candida albicans extracellular vesicle morphology, cargo, and immunostimulatory properties. Eukaryot Cell 14(8):745–754 - PubMed
  147. Woods JP (2016) Revisiting old friends: developments in understanding Histoplasma capsulatum pathogenesis. J Microbiol 54(3):265–276 - PubMed
  148. Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicl 4:27066 - PubMed
  149. Zamith-Miranda D, Heyman HM, Couvillion SP, Cordero RJB, Rodrigues ML, Nimrichter L et al (2020) Comparative molecular and immunoregulatory analysis of extracellular vesicles from Candida albicans and Candida auris. bioRxiv - PubMed
  150. Zaragoza O (2019) Basic principles of the virulence of Cryptococcus. Virulence 10(1):490–501 - PubMed
  151. Zeng F, Morelli AE (2018) Extracellular vesicle-mediated MHC cross-dressing in immune homeostasis, transplantation, infectious diseases, and cancer. Semin Immunopathol 40(5):477–490 - PubMed
  152. Zhan P, Liu W (2017) The changing face of dermatophytic infections worldwide. Mycopathologia 182(1–2):77–86 - PubMed
  153. Zhang YJ, Han Y, Sun YZ, Jiang HH, Liu M, Qi RQ et al (2019) Extracellular vesicles derived from Malassezia furfur stimulate IL-6 production in keratinocytes as demonstrated in in vitro and in vivo models. J Dermatol Sci 93(3):168–175 - PubMed

Publication Types