Display options
Share it on

Methods Mol Biol. 2022;2445:117-125. doi: 10.1007/978-1-0716-2071-7_8.

Detection of Nuclear Biomarkers for Chromosomal Instability.

Methods in molecular biology (Clifton, N.J.)

Carles Pons, Eugenia Almacellas, Albert Tauler, Caroline Mauvezin

Affiliations

  1. Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain.
  2. Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK.
  3. Department de Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Catalonia, Spain.
  4. Metabolism and Cancer Laboratory, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomédica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.
  5. Metabolism and Cancer Laboratory, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomédica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain. [email protected].
  6. Department of Biomedicine, Unit of Cell Biology, Faculty of Medicine and Health Sciences, University of Barcelona, Carrer Casanova, Barcelona, Spain. [email protected].

PMID: 34972989 DOI: 10.1007/978-1-0716-2071-7_8

Abstract

Chromosomal instability (CIN) is a hallmark of cancer, which is characterized by the gain or loss of chromosomes as well as the rearrangement of the genetic material during cell division. Detection of mitotic errors such as misaligned chromosomes or chromosomal bridges (also known as lagging chromosomes) is challenging as it requires the analysis and manual discrimination of chromosomal aberrations in mitotic cells by molecular techniques. In interphase cells, more frequent in the cell population than mitotic cells, two distinct nuclear phenotypes are associated with CIN: the micronucleus and the toroidal nucleus. Several methods are available for the detection of micronuclei, but none for toroidal nuclei. Here, we provide a method to quantify the presence of both nuclear biomarkers for the evaluation of CIN status in non-mitotic cells particularly suited for genotoxicity screens.

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Biological image processing; Chromosomal instability; Genotoxicity biomarkers; Micronucleus; Nuclear phenotype; Toroidal nucleus

References

  1. McClelland SE (2017) Role of chromosomal instability in cancer progression. Endocr Relat Cancer 24:T23–T31 - PubMed
  2. Watkins TBK, Lim EL, Petkovic M et al (2020) Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587:126–132 - PubMed
  3. Hoevenaar WHM, Janssen A, Quirindongo AI et al (2020) Degree and site of chromosomal instability define its oncogenic potential. Nat Commun 11:1501 - PubMed
  4. Vargas-Rondón N, Pérez-Mora E, Villegas VE et al (2020) Role of chromosomal instability and clonal heterogeneity in the therapy response of breast cancer cell lines. Cancer Biol Med 17:970–985 - PubMed
  5. Bakhoum SF, Landau DA (2017) Chromosomal instability as a driver of tumor heterogeneity and evolution. Cold Spring Harb Perspect Med 7(6):a029611 - PubMed
  6. Almacellas E, Pelletier J, Day C et al (2021) Lysosomal degradation ensures accurate chromosomal segregation to prevent chromosomal instability. Autophagy 17:796–813 - PubMed
  7. Hämälistö S, Stahl JL, Favaro E et al (2020) Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation. Nat Commun 11:229 - PubMed
  8. Holdgaard SG, Cianfanelli V, Pupo E et al (2019) Selective autophagy maintains centrosome integrity and accurate mitosis by turnover of centriolar satellites. Nat Commun 10:4176 - PubMed
  9. Gisselsson D, Björk J, Höglund M et al (2001) Abnormal nuclear shape in solid tumors reflects mitotic instability. Am J Pathol 158:199–206 - PubMed
  10. Sommer S, Buraczewska I, Kruszewski M (2020) Micronucleus assay: the state of art, and future directions. Int J Mol Sci 21(4):1534 - PubMed
  11. Krupina K, Goginashvili A, Cleveland DW (2021) Causes and consequences of micronuclei. Curr Opin Cell Biol 70:91–99 - PubMed
  12. Hintzsche H, Hemmann U, Poth A et al (2017) Fate of micronuclei and micronucleated cells. Mutat Res Rev Mutat Res 771:85–98 - PubMed
  13. Lepage CC, Thompson LL, Larson B et al (2020) An automated, single cell quantitative imaging microscopy approach to assess micronucleus formation, genotoxicity chromosome instability. Cells 9:344 - PubMed
  14. Mosesso P, Cinelli S (2019) In vitro cytogenetic assays: chromosomal aberrations and micronucleus tests. Methods Mol Biol 2031:79–104 - PubMed
  15. Beliën JA, Copper MP, Braakhuis BJ et al (1995) Standardization of counting micronuclei: definition of a protocol to measure genotoxic damage in human exfoliated cells. Carcinogenesis 16:2395–2400 - PubMed
  16. Ramadhani D, Purnami S (2013) Automated detection of binucleated cell and micronuclei using CellProfiler 2.0 software. HAYATI J Biosci 20:151–156 - PubMed
  17. Naso FD, Sterbini V, Crecca E et al (2020) Excess TPX2 interferes with microtubule disassembly and nuclei reformation at mitotic exit. Cells 9:374 - PubMed
  18. Verstraeten VLRM, Peckham LA, Olive M et al (2011) Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect. Proc Natl Acad Sci U S A 108:4997–5002 - PubMed
  19. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682 - PubMed

Publication Types