Display options
Share it on

Methods Mol Biol. 2022;2445:255-272. doi: 10.1007/978-1-0716-2071-7_16.

Studying Autophagy In Vivo in the Mammary Gland and in Xenograft Samples.

Methods in molecular biology (Clifton, N.J.)

Zhongju Zou, Álvaro F Fernández, Verena Jendrossek, Silvia Vega-Rubín-de-Celis

Affiliations

  1. Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
  2. Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain.
  3. Institute of Cell Biology (Cancer Research), Essen University Hospital, Essen, Germany.
  4. Institute of Cell Biology (Cancer Research), Essen University Hospital, Essen, Germany. [email protected].

PMID: 34972997 DOI: 10.1007/978-1-0716-2071-7_16

Abstract

Autophagy is a dynamic process that can be monitored in multiple ways, both in vitro and in vivo. Studies in mice are a widely used tool to understand multiple diseases and conditions where autophagy plays a role, and therefore autophagic flux measurement in tissues of rodent models are of utmost importance. Here, we present some assays successfully used in determining the autophagy status in the mice mammary gland as well as in xenografts.

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Autophagy; Electron microscopy; GFP-LC3; Immunohistochemistry; Immunoprecipitation; Mammary gland; RNAseq; Western blot; Xenografts

References

  1. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176(1–2):11–42 - PubMed
  2. Fernandez AF (2018) Autophagy and proteases: basic study of the autophagic flux by western blot. Methods Mol Biol 1731:73–81 - PubMed
  3. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15(3):1101–1111 - PubMed
  4. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–676 - PubMed
  5. Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN et al (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128(5):931–946 - PubMed
  6. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820 - PubMed
  7. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100(25):15077–15082 - PubMed
  8. Fernandez AF, Sebti S, Wei Y, Zou Z, Shi M, McMillan KL et al (2018) Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558(7708):136–140 - PubMed
  9. Vega-Rubin-de-Celis S, Zou Z, Fernandez AF, Ci B, Kim M, Xiao G et al (2018) Increased autophagy blocks HER2-mediated breast tumorigenesis. Proc Natl Acad Sci U S A 115(16):4176–4181 - PubMed
  10. Vega-Rubin-de-Celis S (2019) The role of beclin 1-dependent autophagy in cancer. Biology (Basel) 9(1):4 - PubMed
  11. Vega-Rubin-de-Celis S, Kinch L, Pena-Llopis S (2020) Regulation of beclin 1-mediated autophagy by oncogenic tyrosine kinases. Int J Mol Sci 21(23):9210 - PubMed
  12. He C, Levine B (2010) The beclin 1 interactome. Curr Opin Cell Biol 22(2):140–149 - PubMed
  13. Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G et al (2013) EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 154(6):1269–1284 - PubMed
  14. Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L et al (2013) Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494(7436):201–206 - PubMed

Publication Types