Display options
Share it on

Cell Rep. 2021 Jun 15;35(11):109236. doi: 10.1016/j.celrep.2021.109236.

Correct dosage of X chromosome transcription is controlled by a nuclear pore component.

Cell reports

Jennifer R Aleman, Terra M Kuhn, Pau Pascual-Garcia, Janko Gospocic, Yemin Lan, Roberto Bonasio, Shawn C Little, Maya Capelson

Affiliations

  1. Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  2. Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, 79106 Freiburg, Germany.
  3. Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  4. Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  5. Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address: [email protected].

PMID: 34133927 PMCID: PMC8224986 DOI: 10.1016/j.celrep.2021.109236

Abstract

Dosage compensation in Drosophila melanogaster involves a 2-fold transcriptional upregulation of the male X chromosome, which relies on the X-chromosome-binding males-specific lethal (MSL) complex. However, how such 2-fold precision is accomplished remains unclear. Here, we show that a nuclear pore component, Mtor, is involved in setting the correct levels of transcription from the male X chromosome. Using larval tissues, we demonstrate that the depletion of Mtor results in selective upregulation at MSL targets of the male X, beyond the required 2-fold. Mtor and MSL components interact genetically, and depletion of Mtor can rescue the male lethality phenotype of MSL components. Using RNA fluorescence in situ hybridization (FISH) analysis and nascent transcript sequencing, we find that the effect of Mtor is not due to defects in mRNA export but occurs at the level of nascent transcription. These findings demonstrate a physiological role for Mtor in the process of dosage compensation, as a transcriptional attenuator of X chromosome gene expression.

Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

Keywords: MSL; Megator; Mtor; X chromosome; dosage compensation; nuclear pore complex; nucleoporin; transcription

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

References

  1. Mol Cell Biol. 2000 Jan;20(1):312-8 - PubMed
  2. Nature. 2006 Jun 8;441(7094):774-8 - PubMed
  3. Nat Rev Genet. 2012 Jan 18;13(2):123-34 - PubMed
  4. Nat Struct Mol Biol. 2014 Feb;21(2):118-25 - PubMed
  5. Cytogenet Genome Res. 2009;124(3-4):298-311 - PubMed
  6. Mol Cell. 2020 Jan 2;77(1):67-81.e7 - PubMed
  7. Mol Cell. 2015 Aug 20;59(4):576-87 - PubMed
  8. Mol Cell. 2020 Jan 2;77(1):51-66.e8 - PubMed
  9. J Struct Biol. 1998 Dec 1;124(1):51-8 - PubMed
  10. Cold Spring Harb Perspect Biol. 2010 Oct;2(10):a000562 - PubMed
  11. Bioinformatics. 2012 Aug 15;28(16):2184-5 - PubMed
  12. PLoS One. 2013;8(4):e60450 - PubMed
  13. Bioinformatics. 2014 Apr 1;30(7):923-30 - PubMed
  14. Genome Res. 2013 Mar;23(3):473-85 - PubMed
  15. Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5 - PubMed
  16. PLoS Genet. 2008 Dec;4(12):e1000302 - PubMed
  17. Nat Struct Mol Biol. 2005 Jun;12(6):482-8 - PubMed
  18. Nature. 2011 Mar 3;471(7336):115-8 - PubMed
  19. Genes Dev. 2005 Oct 1;19(19):2289-94 - PubMed
  20. Methods Mol Biol. 2018;1649:127-142 - PubMed
  21. EMBO J. 2002 Mar 1;21(5):1084-91 - PubMed
  22. J Cell Sci. 1997 Apr;110 ( Pt 8):927-44 - PubMed
  23. Curr Opin Cell Biol. 2016 Jun;40:153-160 - PubMed
  24. Genetics. 2003 Nov;165(3):1167-81 - PubMed
  25. J Cell Biol. 2019 Sep 2;218(9):2945-2961 - PubMed
  26. Genome Biol. 2014;15(12):550 - PubMed
  27. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3208-13 - PubMed
  28. Development. 2006 Nov;133(22):4475-83 - PubMed
  29. Cell. 2008 Aug 22;134(4):599-609 - PubMed
  30. Chromosoma. 2005 Nov;114(5):352-64 - PubMed
  31. Genes Dev. 2009 Nov 15;23(22):2610-24 - PubMed
  32. Cell. 2013 Feb 28;152(5):969-83 - PubMed
  33. Science. 2012 Aug 10;337(6095):742-6 - PubMed
  34. Mol Biol Cell. 2004 Nov;15(11):4854-65 - PubMed
  35. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  36. PLoS Biol. 2013;11(3):e1001524 - PubMed
  37. EMBO J. 2004 Jun 2;23(11):2258-68 - PubMed
  38. Genes Dev. 2006 Nov 1;20(21):2922-36 - PubMed
  39. Mol Cell. 2017 Apr 6;66(1):63-76.e6 - PubMed
  40. Nat Cell Biol. 2015 May;17(5):558-68 - PubMed
  41. Dev Cell. 2017 Jun 5;41(5):540-554.e7 - PubMed
  42. PLoS Genet. 2010 Feb 12;6(2):e1000846 - PubMed
  43. J Cell Biol. 2009 Mar 9;184(5):647-57 - PubMed
  44. J Biol Chem. 2000 Jan 7;275(1):343-50 - PubMed
  45. Cell. 1991 Sep 6;66(5):935-47 - PubMed
  46. Cell Rep. 2013 Nov 14;5(3):629-36 - PubMed
  47. J Cell Biol. 1993 Jan;120(2):291-9 - PubMed
  48. Cell. 2013 Aug 15;154(4):789-800 - PubMed
  49. Genetics. 2006 Dec;174(4):1859-66 - PubMed
  50. Mol Cell. 2006 Mar 17;21(6):811-23 - PubMed
  51. Nat Commun. 2020 Sep 11;11(1):4577 - PubMed
  52. Development. 2009 May;136(9):1399-410 - PubMed
  53. Genes Dev. 2015 Jun 15;29(12):1224-38 - PubMed
  54. Curr Opin Genet Dev. 2014 Apr;25:43-9 - PubMed
  55. Bioinformatics. 2013 Jan 1;29(1):15-21 - PubMed
  56. J Biol Chem. 2007 Nov 23;282(47):33902-7 - PubMed
  57. Nat Protoc. 2020 Feb;15(2):604-627 - PubMed
  58. Science. 2016 Jun 3;352(6290):1225-8 - PubMed
  59. Cell Rep. 2014 Oct 23;9(2):433-42 - PubMed
  60. Plant Physiol. 2007 Jul;144(3):1383-90 - PubMed
  61. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  62. EMBO J. 2005 Feb 23;24(4):813-23 - PubMed
  63. J Cell Biol. 1999 Mar 8;144(5):839-55 - PubMed
  64. Chromosoma. 2007 Apr;116(2):95-106 - PubMed
  65. G3 (Bethesda). 2014 Jan 10;4(1):155-62 - PubMed
  66. Curr Opin Genet Dev. 2015 Apr;31:57-66 - PubMed
  67. Nucleic Acids Res. 2009 Oct;37(18):e123 - PubMed
  68. Epigenetics Chromatin. 2016 Dec 3;9:54 - PubMed
  69. Cell. 2010 Feb 5;140(3):360-71 - PubMed
  70. Curr Opin Cell Biol. 2017 Jun;46:26-32 - PubMed
  71. Genes Dev. 2009 Nov 1;23(21):2490-5 - PubMed
  72. Bioinformatics. 2010 Mar 15;26(6):841-2 - PubMed
  73. Cell. 2010 Feb 5;140(3):372-83 - PubMed
  74. Cell. 2004 Jan 9;116(1):63-73 - PubMed
  75. Adv Exp Med Biol. 2014;773:309-22 - PubMed
  76. Mol Cell. 2011 Oct 7;44(1):51-61 - PubMed

Publication Types

Grant support